Mathematische Annalen

, Volume 244, Issue 1, pp 83–87 | Cite as

On a tensor product characterization of nuclearity

  • K. John
  • V. Zizler


Tensor Product Product Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apiola, H.: Duality between spaces ofp-summable sequences, (p, q)-summing operators and characterizations of nuclearity. Math. Ann.219, 53–64 (1976)Google Scholar
  2. 2.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.16 (1955)Google Scholar
  3. 3.
    Johnson, W.B., Tzafriri, L.: On the local structure of subspaces of Banach lattices. Israel J. Math.20, 292–299 (1975)Google Scholar
  4. 4.
    Lindenstrauss, J.: The geometric theory of the classical Banach spaces. Actes Congress Int. Math. Paris: Gauthier-Villars 1970Google Scholar
  5. 5.
    Pietsch, A.: Nuclear locally convex spaces. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  6. 6.
    Pietsch, A.: Absolutp-summierende Abbildungen in normierten Räumen. Studia Math.28, 333–353 (1967)Google Scholar
  7. 7.
    Stegall, C.P., Retherford, J.R.: Fully nuclear and completely nuclear operators with applications to ℒ1 and ℒ spaces. Trans. Amer. Math. Soc.163, 457–492 (1972)Google Scholar
  8. 8.
    Tzafriri, L.: On Banach spaces with unconditional bases. Israel J. Math.17, 84–93 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • K. John
    • 1
    • 2
  • V. Zizler
    • 1
    • 2
  1. 1.Mathematical Institute of Czechoslovak Academy of SciencesPrague 1Czechoslovakia
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czechoslovakia

Personalised recommendations