Advertisement

Mathematische Annalen

, Volume 244, Issue 1, pp 55–64 | Cite as

Existence theorems for a two-point boundary value problem in Banach space

  • Wolfgang Walter
Article

Keywords

Banach Space Existence Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernfeld, S.R., Lakshmikantham, V.: An introduction to nonlinear boundary value problems. New York, London: Academic Press 1974Google Scholar
  2. 2.
    Darbo, G.: Punti uniti in trasformationi a condominio non compatto. Rend. Sem. Mat. Univ. Padova24, 84–92 (1955)Google Scholar
  3. 3.
    Deimling, K.: Ordinary differential equations in Banach spaces. Lecture Notes in Mathematics, 596. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  4. 4.
    Hartman, P.: Ordinary differential equations. New York, London, Sydney: Wiley 1964Google Scholar
  5. 5.
    Lemmert, R.: Über die Invarianz konvexer Teilmengen eines normierten Raumes in bezug auf elliptische Differentialgleichungen. Comm. Partial Differential Equations3, 297–318 (1978)Google Scholar
  6. 6.
    Lettenmeyer, F.: Über die von einem Punkt ausgehenden Integralkurven einer Differentialgleichung zweiter Ordnung. Deutsche Math.7, 56–74 (1942)Google Scholar
  7. 7.
    Schmitt, K., Thompson, R.: Boundary value problems for infinite systems of second-order differential equations. J. Differential Equations18, 277–295 (1975)Google Scholar
  8. 8.
    Scorza Dragoni, G.: Sul problema dei valori ai limiti per i systemi di equazioni differenziali del secondo ordine. Boll. Un. Mat. Ital.14, 225–230 (1935)Google Scholar
  9. 9.
    Scorza Dragoni, G.: Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine. Math. Ann.105, 133–143 (1931)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Wolfgang Walter
    • 1
  1. 1.Mathematisches Institut der UniversitätKarlsruheGermany

Personalised recommendations