Advertisement

Mathematische Annalen

, Volume 244, Issue 1, pp 33–53 | Cite as

Localization of theK-theory of polynomial extensions

  • Ton Vorst
Article

Keywords

Polynomial Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bak, A.: Strong approximation for central coverings of elementary groups. PreprintGoogle Scholar
  2. 2.
    Bass, H.: AlgebraicK-theory. New York: Benjamin 1968Google Scholar
  3. 3.
    Bass, H.: Some problems in “classical” algebraicK-theory. Lecture Notes in Mathematics, 342, pp. 3–73. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  4. 4.
    Bloch, S.: AlgebraicK-theory and crystalline cohomology. Publ. Inst. des Hautes Études Scientifiques47, 187–268 (1978)Google Scholar
  5. 5.
    Bloch, S.: Some formulas pertaining to theK-theory of commutative groupschemes. PreprintGoogle Scholar
  6. 6.
    Davis, E.: On the geometric interpretation of seminormality. Proc. Amer. Math. Soc.68, 1–5 (1978)Google Scholar
  7. 7.
    Dennis, R.K., Stein, M.:K 2 of radical ideals and semi-local rings revisited. Lecture Notes in Mathematics, Vol. 342, pp. 281–303. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  8. 8.
    Dennis, R.K., Krusemeyer, M.:K 2(A[X, Y]/XY), a problem of Swan, and related computations. J. Pure Appl. Algebra15, 125–148 (1979)Google Scholar
  9. 9.
    Ferrand, D.: Les modules projectifs de type fini sur un anneau de polynomes sur un corps sont libres. Lecture Notes in Mathematics, 567, pp. 202–221. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  10. 10.
    Godement, R.: Théorie des faisceaux. Paris: Hermann 1958Google Scholar
  11. 11.
    Grayson, D.: Higher algebraicK-theory II. Lecture Notes in Mathematics, 551, pp. 217–240. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  12. 12.
    Grayson, D.:K-theory of endomorphisms. J. Algebra48, 439–446 (1977)Google Scholar
  13. 13.
    Grothendieck, A., Dieudonné, J.A.: Eléments de géométrie algébrique I. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  14. 14.
    Grothendieck, A.: Eléments de géométrie algébrique III. Publ. Inst. Hautes Études Scientifiques11 (1961)Google Scholar
  15. 15.
    Grothendieck, A.: Eléments de géométrie algébrique IV. Publ. Inst. Hautes Études Scientifiques24 (1964)Google Scholar
  16. 16.
    Karoubi, M.: Localisation des formes quadratiques. Ann. Sci. École Norm. Sup.4, 359–404 (1974)Google Scholar
  17. 17.
    Maazen, H., Stienstra, J.: A presentation forK 2 of split radical pairs. J. Pure Appl. Algebra10, 271–294 (1978)Google Scholar
  18. 18.
    Milnor, J.: Introduction to algebraicK-theory. Annals of Mathematics Studies, Vol. 72. Princeton: University Press 1971Google Scholar
  19. 19.
    Quillen, D.: Higher algebraicK-theory I. Lecture Notes in Mathematics, 341, pp. 85–147. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  20. 20.
    Stienstra, J.: Deformations of a second Chow group. Thesis, Utrecht (1978)Google Scholar
  21. 21.
    Vorst, T.: Polynomial extensions and excision forK 1. Math. Ann. (in press, 1979)Google Scholar
  22. 22.
    Weibel, C.A.: Homotopy in algebraicK-theory. Thesis, Chicago (1977)Google Scholar

References

  1. 1.
    Kallen, W.L.J. van der: Another presentation for Steinberg groups. Indag. Math.39, 304–312 (1977)Google Scholar
  2. 2.
    Keune, F.: The relativization ofK 2. J. Algebra54, 159–177 (1978)Google Scholar
  3. 3.
    Loday, J.: Cohomologie et groupe de Steinberg relatifs. J. Algebra54, 178–202 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Ton Vorst
    • 1
  1. 1.Mathematical InstituteState UniversityUtrechtThe Netherlands

Personalised recommendations