Advertisement

Mathematische Annalen

, Volume 246, Issue 2, pp 155–165 | Cite as

Espaces de Moišezon relatifs et algébrisation des modifications analytiques

  • V. Ancona
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 0.
    Ancona, V., Tomassini, G.: Théorèmes d'existence pour les modifications analytiques. Invent. Math.51, 271–286 (1979)Google Scholar
  2. 1.
    Andreotti, A., Stoll, W.: Analytic and algebraic dependence of meromorphic functions. Lecture Notes in Mathematics, Vol. 234. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  3. 2.
    Artin, M.: Algebraisation of formal moduli. I. Global analysis. Papers in honor of Kodaira, p. 21–71. Tokyo: University of Tokyo Press 1969Google Scholar
  4. 3.
    Artin, M.: Algebraisation of formal moduli. II. Existence of modifications. Ann. Math.91, 88–135 (1970)Google Scholar
  5. 4.
    Bingener, J.: Schemata über Steinschen Algebren. Schriftenreihe des Mathematischen Institutes der Universität Münster, 2. Serie, Heft 10 (1976)Google Scholar
  6. 5.
    Bingener, J.: Über formale komplexe Räume. manuscripta math.24, 253–293 (1978)CrossRefGoogle Scholar
  7. 6.
    Douady, A.: Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné. Ann. Inst. Fourier19, 1–99 (1966)Google Scholar
  8. 7.
    Elkik, R.: Solutions d'équations à coefficients dans un anneau hensélien. Ann. École Norm. Sup. 4ème série 6, 553–604 (1973)Google Scholar
  9. 8.
    Frisch, J.: Points de platitude d'un morphisme d'espaces analytiques complexes. Invent. Math.4, 118–138 (1967)Google Scholar
  10. 9.
    Grothendieck, A., Dieudonné, J.: Eléments de géometrie algébrique. Publ. Math. I.H.E.S. No. 20 (1964)Google Scholar
  11. 10.
    Hakim, M.: Topos annelés et schémas relatifs. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  12. 11.
    Hironaka, H.: Formal line bundles along exceptional loci. Dans: Algebraic geometry. London, Bombay, Oxford 1969Google Scholar
  13. 12.
    Hironaka, H.: Flattening theorem in complex-analytic geometry. Am. J. Math.97, 503–547 (1975)Google Scholar
  14. 13.
    Knutson, D.: Algebraic spaces. Lecture Notes in Mathematics, Vol. 203. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  15. 14.
    Kurke, H., Pfister, G., Roczen, M.: Henselsche Ringe und algebraische Geometrie. Berlin: Deutscher Verlag der Wissenschaften 1975Google Scholar
  16. 15.
    Moišezon, B.G.: Onn-dimensional compact complex varieties withn algebraically independent meromorphic functions. I–III. Izv. Akad. Nauk SSSR Ser. Mat.30, 133–174; 345–386; 621–656 (1966). Traduit en anglais dans: Am. Math. Soc. Trans.63, 51–177 (1967)Google Scholar
  17. 16.
    Moišezon, B.G.: Modifications of complex varieties and the Chow lemma. Dans: Lecture Notes in Mathematics, Vol. 412, pp. 133–139. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  18. 17.
    Raynaud, M., Gruson, L.: Critères de platitude et projectivité. Invent. Math.13, 1–89 (1971)Google Scholar
  19. 18.
    Seminaire, H. Cartan 1960–61: Familles d'espaces complexes et fondements de la géometrie analytique. Paris: École Norm. Sup. (1962)Google Scholar
  20. 19.
    Zak, F.L.:q-finite morphisms in formal algebraic geometry. Izv. Akad. Nauk SSSR Ser. Mat.39, 28–68 (1975). Traduit en anglais dans: Math. USSR Izvestija9, 27–62 (1975)Google Scholar
  21. 20.
    Zariski, O., Samuel, P.: Commutative Algebra, Vol. 1. Berlin, Heidelberg, New York: Springer 1975Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • V. Ancona
    • 1
  1. 1.Department of MathematicsUniversity of FerraraFerraraItaly

Personalised recommendations