Advertisement

Mathematische Annalen

, Volume 235, Issue 3, pp 267–290 | Cite as

Full-hyperharmonic structures on harmonic spaces. I

  • Ilpo Laine
Article

Keywords

Harmonic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arsove, M., Leutwiler, H.: Algebraic potential theory. To appear in Mem. Amer. Math. Soc.Google Scholar
  2. 2.
    Bauer, H.: Zum Cauchyschen und Dirichletschen Problem bei elliptischen und parabolischen Differentialgleichungen. Math. Ann.164, 142–153 (1966)Google Scholar
  3. 3.
    Bauer, H.: Harmonische Räume und ihre Potentialtheorie. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  4. 4.
    Boboc, N., Bucur, Gh., Cornea, A.:H-cones and potential theory. Ann. Inst. Fourier25, 71–108 (1975)Google Scholar
  5. 5.
    Boboc, N., Siretchi, Gh.: Sur la compactification d'un espace topologique. Bull. Math. Soc. Sci. Math. Phys. R.P.R.53, 155–165 (1961)Google Scholar
  6. 6.
    Constantinescu, C., Cornea, A.: Ideale Ränder Riemannscher Flächen. Berlin, Göttingen, Heidelberg: Springer 1963Google Scholar
  7. 7.
    Constantinescu, C., Cornea, A.: Potential theory on harmonic spaces. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  8. 8.
    Isbell, J.: Uniform spaces. Mathematical Surveys12. Providence, R.I.: American Mathematical Society 1964Google Scholar
  9. 9.
    Kori, T.: Axiomatic theory of non-negative full-superharmonic functions. J. Math. Soc. Japan23, 481–526 (1971)Google Scholar
  10. 10.
    Kori, T.: Problème de Neumann sur les espaces harmoniques. Math. Ann.224, 53–76 (1976)Google Scholar
  11. 11.
    Kuramochi, Z.: Potentials on Riemann surfaces. J. Fac. Sci. Hokkaido Univ. Ser. I16, 5–79 (1962)Google Scholar
  12. 12.
    Laine, I.: Full-harmonic structures on harmonic spaces. To appear in the Proceedings of the III Romanian — Finnish Seminar on Complex AnalysisGoogle Scholar
  13. 13.
    Laine, I.: Full-hyperharmonic structures on harmonic spaces II. To appear in Math. Z.Google Scholar
  14. 14.
    Maeda, F.-Y.: Axiomatic treatment of full-superharmonic functions. J. Sci. Hiroshima Univ. Ser. A-I30, 197–215 (1966)Google Scholar
  15. 15.
    Maeda, F.-Y.: Harmonic and fullharmonic structures on a differentiable manifold. J. Sci. Hiroshima Univ. Ser. A-I34, 271–312 (1970)Google Scholar
  16. 16.
    Maeda, F.-Y., Ohtsuka, M. (ed.): Kuramochi boundaries of Riemann surfaces. Berlin, Heidelberg, New York: Springer 1968Google Scholar
  17. 17.
    Rayburn, M.: On the Stoilow-Kerékjártó compactification. J. London Math. Soc.6, 193–196 (1973)Google Scholar
  18. 18.
    Tanaka, H.: On Kuramochi's function-theoretic separative metrics on Riemann surfaces. J. Sci. Hiroshima Univ. Ser. A-I32, 309–330 (1968)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Ilpo Laine
    • 1
  1. 1.Department of MathematicsUniversity of JoensuuJoensuu 10Finland

Personalised recommendations