Mathematische Annalen

, Volume 235, Issue 3, pp 217–246 | Cite as

On the periods of Enriques surfaces. II

  • Eiji Horikawa


Enriques Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin, M.: On isolated rational singularities of surfaces. Amer. J. Math.88, 129–136 (1966)Google Scholar
  2. 2.
    Artin, M.: Algebraization of formal moduli. II. Existence of modifications. Ann. of Math.91, 88–135 (1970)Google Scholar
  3. 3.
    Baily, W. L., Jr., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math.84, 442–528 (1966)Google Scholar
  4. 4.
    Borel, A.: Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Diff. Geometry6, 543–560 (1972)Google Scholar
  5. 5.
    Brieskorn, E.: Singular elements of semi-simple algebraic groups. Actes Congrès intern. Math., 1970 Nice, Tom 2, 279–284. Paris: Gauthier-Villars 1971Google Scholar
  6. 6.
    Clemens, C. H., Jr.: Picard-Lefschetz theorem for families of non-singular algebraic varieties acquiring ordinary singularities. Trans. Amer. Math. Soc.136, 93–108 (1969)Google Scholar
  7. 7.
    Griffiths, P.A.: Periods of integrals on algebraic manifolds. II. Amer. J. Math.90, 805–865 (1968)Google Scholar
  8. 8.
    Griffith, P.A.: Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems. Bull. Amer. Math. Soc.76, 228–296 (1970)Google Scholar
  9. 9.
    Horikawa, E.: Algebraic surfaces of general type with smallc 12. II. Invent. math.37, 121–155 (1976)Google Scholar
  10. 10.
    Horikawa, E.: Surjectivity of the period map of K 3 surfaces of degree 2. Math. Ann.228, 113–146 (1977) (referred to as [K])Google Scholar
  11. 11.
    Horikawa, E.: On the periods of Enriques surfaces. I. to appear in Math. Ann. (referred to as Part I)Google Scholar
  12. 12.
    Horikawa, E.: On the periods of Enriques surfaces. I, II. Proc. Japan Acad.53, 124–127 (1977),53 Ser. A, 53–55 (1977)Google Scholar
  13. 13.
    Kodaira, K.: On the stability of compact submanifolds of complex manifolds. Amer. J. Math.85, 79–94 (1963)Google Scholar
  14. 14.
    Kodaira, K.: On the structure of compact complex analytic surfaces. III. Amer. J. Math.90, 55–83 (1968)Google Scholar
  15. 15.
    Mumford, D.: Geometric invariant theory. Ergeb. der Math. 34. Berlin, Heidelberg, New York: Springer 1965Google Scholar
  16. 16.
    Piateckii-Shapiro, I.I.: Geometry of classical domains and automorphic functions (in Russian). Moscow: Fizmatgiz 1961Google Scholar
  17. 17.
    Piateckii-Shapiro, I.I., Shafarevich, I.R.: A Torelli theorem for algebraic surfaces of type K3 (in Russian). Izv. Akad. Nauk USSR35, 530–572 (1971)Google Scholar
  18. 18.
    Roan, S-s.: Degeneration of K3 and abelian surfaces. Thesis, Brandeis Univ. 1974Google Scholar
  19. 19.
    Suwa, T.: On ruled surfaces of genus 1. J. Math. Soc. Japan21, 291–311 (1969)Google Scholar
  20. 20.
    Todorov, A.N.: Conditions of finiteness of monodromy for families of curves and surfaces (in Russian). Izv. Akad. Nauk USSR40, 791–805 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Eiji Horikawa
    • 1
  1. 1.Department of MathematicsUniversity of TokyoHongo, TokyoJapan

Personalised recommendations