Mathematische Annalen

, Volume 252, Issue 3, pp 217–219 | Cite as

Nonexistence of curvature in most points of most convex surfaces

  • Tudor Zamfirescu


Convex Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandrov, A.D.: Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (Russian). Uchenye Zapiski Leningrad. Gos. Univ. Math. Ser.6, 3–35 (1939)Google Scholar
  2. 2.
    Busemann, H.: Convex Surfaces. New York: Interscience Publishers 1958Google Scholar
  3. 3.
    Busemann, H., Feller, W.: Krümmungseigenschaften konvexer Flächen. Acta Math.66, 1–47 (1935)Google Scholar
  4. 4.
    Gruber, P.M.: Die meisten konvexen Körper sind glatt, aber nicht zu glatt. Math. Ann.229, 259–266 (1977)Google Scholar
  5. 5.
    Klee, V.: Some new results on smoothness and rotundity in normed linear spaces. Math. Ann.139, 51–63 (1959)Google Scholar
  6. 6.
    Schneider, R.: On the curvatures of convex bodies. Math. Ann.240, 177–181 (1979)Google Scholar
  7. 7.
    Zamfirescu, T.: The curvature of most convex surfaces vanishes almost everywhere (to appear in Math. Z.)Google Scholar
  8. 8.
    Zamfirescu, T.: Intersections of tangent convex curves (to appear)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Tudor Zamfirescu
    • 1
  1. 1.Abteilung Mathematik der UniversitätDortmund 50Federal Republic of Germany

Personalised recommendations