Advertisement

Mathematische Annalen

, Volume 252, Issue 3, pp 197–216 | Cite as

A cuspidal class number formula for the modular curvesX1(N)

Article

Keywords

Class Number Number Formula Class Number Formula Cuspidal Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Iw]
    Iwasawa, K.: A class number formula for cyclotomic fields. Ann. Math.76, 171–179 (1962)Google Scholar
  2. [K 1]
    Klimek, P.: Thesis, Berkeley 1975Google Scholar
  3. [Ku 1]
    Kubert, D.: Quadratic relations for generators of units in the modular function field. Math. Ann.225, 1–20 (1977)Google Scholar
  4. [Ku 2]
    Kubert, D.: The universal ordinary distribution. Bull. Soc. Math. France107, 179–202 (1979)Google Scholar
  5. [KL]
    Kubert, D., Lang, S.: Modular units (in preparation)Google Scholar
  6. [KL 1]
    Kubert, D., Lang, S.: Units in the modular function field. I. Math. Ann.218, 67–96 (1975)Google Scholar
  7. [KL 2]
    Kubert, D., Lang, S.: Units in the modular function field. II. A full set of units. Math. Ann.218, 175–189 (1975)Google Scholar
  8. [KL 3]
    Kubert, D., Lang, S.: Units in the modular function field. III. Distribution relations. Math. Ann.218, 273–285 (1975)Google Scholar
  9. [KL 4]
    Kubert, D., Lang, S.: Units in the modular function field. IV. The Siegel functions are generators. Math. Ann.227, 223–242 (1977)Google Scholar
  10. [KL 5]
    Kubert, D., Lang, S.: Distributions on toroidal groups. Math. Z.148, 33–51 (1976)Google Scholar
  11. [KL 6]
    Kubert, D., Lang, S.: Thep-primary component of the cuspidal divisor class group on the modular curveX(p). Math. Ann.234, 25–44 (1978)Google Scholar
  12. [KL 7]
    Kubert, D., Lang, S.: Stickelberger ideals. Math. Ann.237, 203–212 (1978)Google Scholar
  13. [KL 8]
    Kubert, D., Lang, S.: The index of Stickelberger ideals of order 2 and cuspidal class numbers. Math. Ann.237, 213–232 (1978)Google Scholar
  14. [L 1]
    Lang, S.: Introduction to modular forms. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  15. [L 2]
    Lang, S.: Cyclotomic fields. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  16. [Si]
    Sinnott, W.: On the Stickelberger ideal and the circular units of a cyclotomic field. Ann. Math.108, 107–134 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Jing Yu
    • 1
  1. 1.Mathematics DepartmentYale UniversityNew HavenUSA

Personalised recommendations