Mathematische Annalen

, Volume 252, Issue 3, pp 183–196 | Cite as

Almost periodic functions on hypergroups

  • Rupert Lasser


Periodic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burckel, R.B.: Weakly almost periodic functions on semigroups. New York: Gordon and Breach 1970Google Scholar
  2. 2.
    Chilana, A.K., Ross, K.A.: Spectral synthesis in hypergroups. Pacific J. Math.76, 313–328 (1978)Google Scholar
  3. 3.
    De Vito, C.: Characterizations of those ideals inL 1(ℝ) which can be synthesized. Math. Ann.203, 171–173 (1973)Google Scholar
  4. 4.
    Dunkl, C.F.: The measure algebra of a locally compact hypergroup. Trans. Amer. Math. Soc.179, 331–348 (1973)Google Scholar
  5. 5.
    Eberlein, W.F.: A note on Fourier-Stieltjes transforms. Proc. Amer. Math. Soc.6, 310–313 (1955)Google Scholar
  6. 6.
    Eberlein, W.F.: The point spectrum of weakly almost periodic functions. Michigan Math. J.3, 137–139 (1955–1956)Google Scholar
  7. 7.
    Grosser, S., Moskowitz, M.: Compactness conditions in topological groups. J. Reine Angew. Math.246, 1–40 (1971)Google Scholar
  8. 8.
    Hartmann, K., Henrichs, R.W., Lasser, R.: Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups. Monatsh. Math.88, 229–238 (1979)Google Scholar
  9. 9.
    Hewitt, E., Ross, K.A.: Abstract harmonic analysis I, II. Berlin-Heidelberg-New York: Springer 1963/1970Google Scholar
  10. 10.
    Jewett, R.I.: Spaces with an abstract convolution of measures. Adv. Math.18, 1–101 (1975)Google Scholar
  11. 11.
    Katznelson, Y.: An introduction to harmonic analysis. New York-London-Toronto: John Wiley & Sons 1968Google Scholar
  12. 12.
    Kitchen, J.W.: Normed modules and almost periodicity. Monatsh. Math.70, 233–243 (1966)Google Scholar
  13. 13.
    Lasser, R.: Primary ideals in centers of group algebras. Math. Ann.229, 53–58 (1977)Google Scholar
  14. 14.
    Liukkonen, J., Mosak, R.: Harmonic analysis and centers of group algebras. Trans. Amer. Math. Soc.195, 147–163 (1974)Google Scholar
  15. 15.
    Mosak, R.: TheL 1- andC*-algebras of [FIA]B groups and their representations. Trans. Amer. Math. Soc.163, 277–310 (1972)Google Scholar
  16. 16.
    Ross, K.A.: Hypergroups and centers of measure algebras. Ist. Naz. Alta. Mat. (Symposia Math.)22, 189–203 (1977)Google Scholar
  17. 17.
    Ross, K.A.: Centers of hypergroups. Trans. Amer. Math. Soc.243, 251–269 (1978)Google Scholar
  18. 18.
    Spector, R.: Aperçu de la théorie des hypergroupes. Lecture Notes in Mathematics 497 (Analyse Harmonique sur les Groupes de Lie, Sem. Nancy-Strasbourg 1973–1975). Berlin, Heidelberg, New York: Springer 1975Google Scholar
  19. 19.
    Spector, R.: Mesures invariantes sur les hypergroupes. Trans. Amer. Math. Soc.239, 147–165 (1978)Google Scholar
  20. 20.
    Ylinen, K.: Characterizations ofB(G) andB(G)∩AP(G) for locally compact groups. Proc. Amer. Math. Soc.58, 151–157 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Rupert Lasser
    • 1
  1. 1.Institut für Mathematik der Technischen Universität MünchenMünchen 2Federal Republic of Germany

Personalised recommendations