Skip to main content
Log in

Studies of charged particle multiplicity inb quark events

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

Using the distance from the average primary vertex to reconstructed secondary vertices in jets, samples of events withb purity varying from about 13% to 89% have been selected. The charged particle multiplicity in the hemispheres opposite those containing these jets has been studied as a function of theb purity of the events. Extrapolating to 0% and 100%b purity, values of the hemisphere charged particle multiplicity inZ 0\(b\bar b\) events and in non-\(b\bar b\) events have been measured to be

$$\begin{gathered} \bar n_b = 11.71 \pm 0.03 \pm 0.18 \pm 0.21, \hfill \\ \bar n_{udsc} = 10.32 \pm 0.01 \pm 0.07 \pm 0.19. \hfill \\ \end{gathered}$$

The first error is statistical, the second systematic and the third is a common systematic error.

The difference in charged particle multiplicity betweenb quark events and light (u, d, s) quark events has been measured and found to be

$$\delta _{bl} = 3.02 \pm 0.05 \pm 0.79.$$

The result is compared to the predictions of MLLA QCD calculations.

By studying the impact parameter distributions of charged particles in the hemispheres opposite these jets, the charged particle decay multiplicity ofB hadrons fromZ 0 decay, including particles fromK 0 s and Λ decay, has been measured to be

$$\bar n^B = 5.51 \pm 0.05 \pm 0.51.$$

From the mean momentum of these decay products and separately from the number of primary charged particles perb event, the averagex E ofb flavoured hadrons has been measured to be

$$\left\langle {x_E } \right\rangle _b = 0.693 \pm 0.003 \pm 0.030.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ahmet et al. OPAL Coll.: Nucl. Instrum. Methods A305 (1991) 275

    Google Scholar 

  2. P. P. Allport et al.: Nucl. Instrum. Methods A324 (1993) 34

    Google Scholar 

  3. G. Alexander et al. OPAL Coll.: Z. Phys. C52 (1991) 175

    Google Scholar 

  4. M.Z. Akrawy et al. OPAL Coll.: Phys. Lett. 263 B (1991) 311

    Google Scholar 

  5. M.Z. Akrawy et al. OPAL Coll.: Phys. Lett. 235B (1990) 389

    Google Scholar 

  6. T. Sjöstrand: Comput. Phys. Commun. 39 (1986) 347; T. Sjöstrand, M. Bengtsson: Comput. Phys. Commun. 43 (1987) 367

    Google Scholar 

  7. M.Z. Akrawy et al. OPAL Coll.: Z. Phys. C47 (1990) 505

    Google Scholar 

  8. P.D. Acton et al. OPAL Coll.: Z. Phys. C58 (1993) 387

    Google Scholar 

  9. C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas: Phys. Rev. D27 (1983) 105

    Google Scholar 

  10. J. Allison et al.: Nucl. Instrum. Methods A317 (1992) 47

    Google Scholar 

  11. G.J. Barker: Ph.D. Thesis, University of London, 1993

  12. P.D. Acton et al. OPAL Coll.: Phys. Lett. 273 B (1991) 355

    Google Scholar 

  13. P.D. Acton et al. OPAL Coll.: Z. Phys. C53 (1992) 539

    Google Scholar 

  14. F. Butler et al. CLEO Coll.: Phys. Rev. Lett. 69 (1992) 2041

    Google Scholar 

  15. R.H. Schindler et al.: Phys. Rev. D24 (1981) 78

    Google Scholar 

  16. A. Ali, B. van Eijk, I. ten Have: Nucl. Phys. B292 (1987) 1

    Google Scholar 

  17. D. Decamp et al. ALEPH Coll.: Phys. Lett. 295 B (1992) 174; P. Abreu et al. DELPHI Coll.: Z. Phys. C53 (1992) 567; B. Adeva et al. L3 Coll.: Phys. Lett. 270 B (1991) 111; P.D. Acton et al. OPAL Coll.: CERN-PPE/93-92, submitted to Z. Phys. C

    Google Scholar 

  18. D. Decamp et al. ALEPH Coll.: Phys. Lett. 244 B (1990) 551; P. Abreu et al. DELPHI Coll.: Z. Phys. C56 (1992) 47; O. Adriani et al. L3 Coll.: Phys. Lett. 288 B (1992) 412

    Google Scholar 

  19. D. Decamp et al.: ALEPH Coll.: Phys. Lett. 266 B (1991) 218; G. Alexander et al. OPAL Coll.: Phys. Lett. 262 B (1991) 341

    Google Scholar 

  20. P.D. Acton et al. OPAL Coll.: Z. Phys. C58 (1993) 523

    Google Scholar 

  21. Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller, S.I. Troyan: Basics of perturbative QCD, Tran Than Van (ed.). Paris: Editions Frontieres 1991

    Google Scholar 

  22. D. Amati, G. Veneziano: Phys. Lett. 83 B (1979) 87; Ya.I. Azimov, Yu.L. Dokshitzer, V.A. Khoze, S.I. Troyan: Z. Phys. C27 (1985) 65

    Google Scholar 

  23. V.A. Khoze: DTP/93-32, 1993

  24. B.A. Schumm, Y.L. Dokshitzer, V.A. Khoze, D.S. Koetke: Phys. Rev. Letters 69 (1992) 3025

    Google Scholar 

  25. P.C. Rowson et al.: Phys. Rev. Lett. 54 (1985) 2580

    Google Scholar 

  26. D.S. Koetke: Ph.D. Thesis SLAC-396

  27. M. Sakuda et al.: Phys. Lett. 152 B (1985) 399; H. Aihara et al.: Phys. Lett. 184D (1987) 299; W. Braunschweig et al.: Z. Phys. C42 (1989) 17; B.A. Schumm et al.: Phys. Rev. D46 (1992) 453

    Google Scholar 

  28. B. Gittelman, S. Stone: B Meson decay, high energy electron positron physics, p. 273 A. Ali, P. Söding (eds.), Singapore: World Scientific 1988

    Google Scholar 

  29. H. Albrecht et al. ARGUS Coll.: Z. Phys. C54 (1992) 20

    Google Scholar 

  30. R. Akers et al. OPAL Coll.: CERN-PPE/93-106, submitted to Z. Phys. C

Download references

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

OPAL Collaboration., Akers, R., Alexander, G. et al. Studies of charged particle multiplicity inb quark events. Z. Phys. C - Particles and Fields 61, 209–221 (1994). https://doi.org/10.1007/BF01413098

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01413098

Keywords

Navigation