Skip to main content
Log in

On the theory of recursion operator

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The general structure and properties of recursion operators for Hamiltonian systems with a finite number and with a continuum of degrees of freedom are considered. Weak and strong recursion operators are introduced. The conditions which determine weak and strong recursion operators are found.

In the theory of nonlinear waves a method for the calculation of the recursion operator, which is based on the use of expansion into a power series over the fields and the momentum representation, is proposed. Within the framework of this method a recursion operator is easily calculated via the Hamiltonian of a given equation. It is shown that only the one-dimensional nonlinear evolution equations can posses a regular recursion operator. In particular, the Kadomtsev-Petviashvili equation has no regular recursion operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevski, L.P.: Theory of solitons. Method of the inverse problem. Moscow: Nauka 1980

    Google Scholar 

  2. Solitons. Topics in Current Physics, Vol. 17, Bullough R, Caudrey, P. (eds.). Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  3. Ablowitz, M.J., Segur, H.: Solitons and inverse scattering transform. Philadelphia: SIAM 1981

    Google Scholar 

  4. Gardner, C.S., Green, J.H., Kruskal, H.D., Miura, R.M.: Commun. Pure Appl. Math.27, 97 (1974)

    Google Scholar 

  5. Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys.18, 1212–1215 (1977)

    Google Scholar 

  6. Gardner, C.S., Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system. J. Math. Phys.12, 1548 (1971)

    Google Scholar 

  7. Zakharov, V.E., Faddeev, L.D.: Funct. Anal. Appl.5, N 4, 18 (1971)

    Google Scholar 

  8. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys.19, 1156 (1978)

    Google Scholar 

  9. Kulish, P.P., Reiman, A.G.: Notes of LOMI Sci. Sem.77, 134–147 (1978)

    Google Scholar 

  10. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Stud. Appl. Math.53, 249–315 (1974)

    Google Scholar 

  11. Flaschka, H., Newell, A.C.: In: Lecture Notes in Physics, Vol. 38, pp. 355–440. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  12. Newell, A.C.: The general structure of integrable evolution equations. Proc. R. Soc. London A365, 283–311 (1979)

    Google Scholar 

  13. Gerdjikov, V.S., Ivanov, M.I., Kulish, P.P.: Quadratic bundle and nonlinear equations. Teor. Mat. Fyz.44, 342 (1980)

    Google Scholar 

  14. Konopelchenko, B.G.: The linear spectral problem of arbitrary order: The general form of the integrable equations and their Bäcklund transformations. Phys. Lett.75, 447–450 (1980), On the structure of integrable evolution equations,79A, 39–43 (1980); On the structure of the commutativeZ 2 graded algebra valued integrable equations,95B, 83–89 (1980); Transformation properties of the integrable evolution equations,100B, 254–260 (1981); On the general structure of integrable equations andZ N -type reductions,108B, 26–32 (1982)

    Google Scholar 

  15. Kulish, P.P.: Notes of LOMI Sci. Sem.96, 105–112 (1980)

    Google Scholar 

  16. Konopelchenko, B.G.: On the structure of equations integrable by the arbitrary-order linear spectral problem. J. Phys. A: Math. Gen.14, 1237–1259 (1981);14, 3125–3143 (1981)

    Google Scholar 

  17. Alonso, L.M.: Schrödinger spectral problems with energy-dependent potentials as sources of nonlinear Hamiltonian evolution equations. J. Math. Phys.21, 2342–2349 (1980); Gel'fand-Dikii method and nonlinear equations associated to Schrödinger operators with energy-dependent potentials. Lett. Math. Phys.4, 215 (1980)

    Google Scholar 

  18. Gerdjikov, V.S., Kulish, P.P.: The generating operator for then ×n linear system. Physica3D, 549–564 (1981)

    Google Scholar 

  19. Konopelchenko, B.G.: Funct. Anal. Appl.16, N 3, 63–65 (1982); Hamiltonian structure of the integrable equations under matrixZ N -reduction. Lett. Math. Phys.6, 309–314 (1982); Physica D (to be published)

    Google Scholar 

  20. Konopelchenko, B.G.: Nonlinear transformations and integrable evolution equations. Fortschritte der Physik,31, 253 (1983)

    Google Scholar 

  21. Dubrovsky, V.G., Konopelchenko, B.G.: Fortschrite der Physik32, N 4 (1984); Preprint Institute of Nuclear Physics, 82–109 (1982); Konopelchenko, B.G., Dubrovsky, V.G.: Ann. Phys. (1984) (to appear), preprint Institute of Nuclear Physics 83–126 (1983)

  22. Gadjiev, I.T., Gerdjikov, V.S., Ivanov, M.I.: Notes of LOMI Sci. Sem.120, 55–68 (1982)

    Google Scholar 

  23. Konopelchenko, B.G.: On the general structure of nonlinear evolution equations integrable by the two-dimensional matrix spectral problem. Commun. Math. Phys.87, 105–125 (1982); General structure of non-linear evolution equations in 1+2 dimensions integrable by the two-dimensional Gel'fand-Dickey-Zakharov-Shabat spectral problem and their transformation properties.88, 531–549 (1983)

    Google Scholar 

  24. Adler, M.: Inventions Math.50, 219–248 (1979)

    Google Scholar 

  25. Reiman, A.G., Semenov-Tyan-Shansky, M.A.: Funct. Anal. Appl.14, N 2, 77–78 (1980)

    Google Scholar 

  26. Gelfand, I.M., Dorphman, I.Ya.: Funct. Anal. Appl.13, N 4, 130–30 (1979);14, N 3, 71–74, (1980)

    Google Scholar 

  27. Funchssteiner, B.: Nonlinear Anal., Theor. Meth. Appl.3, 842–862 (1979); Fuchssteiner, B.: The Lie algebra structure of nonlinear evolution equations admitting infinite dimensional abelian symmetry groups. Prog. Theor. Phys.65, 861–876 (1981);68, 1082–1104 (1982)

    Google Scholar 

  28. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica4D, 47–66 (1981)

    Google Scholar 

  29. Fokas, A.S., Anderson, R.L.: On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for Hamiltonian systems. J. Math. Phys.23, 1066–1073 (1982)

    Google Scholar 

  30. Magri, F.: In: Lecture Notes in Physics, Vol. 120, pp. 233–263. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  31. Arnold, V.I.: Mathematical methods of classical mechanics. Moscow: Nauka 1974

    Google Scholar 

  32. Zakharov, V.E.: Ivz. VUZov. Radiofiz.17, 431–453 (1974)

    Google Scholar 

  33. Zakharov, V.E., Kuznetsov, E.A.: Preprint of Institute of automatics and electrometrii, N 186, Novosibirsk (1982)

  34. Zakharov, V.E., Schulman, E.I.: Degenerative dispersion laws, motion invariants and kinetic equations. Physica1D, 192–202 (1980)

    Google Scholar 

  35. Zakharov, V.E.: In: Lecture Notes in Physics, Vol. 153, pp. 190–216. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, V.E., Konopelchenko, B.G. On the theory of recursion operator. Commun.Math. Phys. 94, 483–509 (1984). https://doi.org/10.1007/BF01403883

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01403883

Keywords

Navigation