Advertisement

Amino Acids

, Volume 13, Issue 2, pp 141–153 | Cite as

Amino acids in honeybee worker haemolymph

  • K. Crailsheim
  • B. Leonhard
Full Papers

Summary

In honeybee workers proline was the predominant amino acid and comprised from 50% in newly emerged bees up to 80% of total amino acids from the 3rd day on. The overall concentration averaged at about 20 mM in newly emerging bees, rose to a maximum of about 25mM at the 3rd–5th day and decreased in older bees. Essential amino acids decreased by 40% during the first 3 days and thereafter stayed constant. The bulk of amino acids with a lower concentration (from traces to about 2mM) showed either no change in concentration or was higher in newly emerging bees and decreased during the lifespan of the insects. Forager bees, collected after flight, had significantly lower proline concentrations as compared to 22 day old bees collected from the colony, while the concentrations of the bulk of all other amino acids did not change significantly. There was a great variance in the concentration of all amino acids between different colonies but we could not prove dependency on relatedness.

Keywords

Amino acids Apis mellifera Free amino acids DABS-Amino acids Haemolymph Age dependency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerswald L, Gäde G (1995) Energy substrates for flight in the blister beetleDecapotoma lunata (Meloidae). J Exp Biol 198: 1423–1431PubMedGoogle Scholar
  2. Barker R, Lehner Y (1972) Free amino acids in thoraces of flown honey bees. Comp Biochem Physiol 43: 163–169Google Scholar
  3. Beenakkers A, Horst D, Marrewuk W (1984) Insect flight muscle metabolism. Insect Biochem 14: 243–260Google Scholar
  4. Berger B, Crailsheim K, Leonhard B (1996) Amino acid metabolism in honey bee workers and drones. In: Proceedings XX International Congress of Entomology, Firenze, Italy August 25–31, 1996, p 190Google Scholar
  5. Brosemer R, Veerabhadrappa P (1965) Pathway of proline oxidation in insect flight muscle. Biochim Biophys Acta 110: 102–112PubMedGoogle Scholar
  6. Bühler A, Lanzrein B, Wille H (1983) Influence of temperature and carbon dioxide concentration on juvenile hormone titre and dependent parameters of adult worker honey bees (Apis mellifera L). J Insect Physiol 29: 885–893Google Scholar
  7. Cardinaud B, Coles J, Perrottet P, Spencer AJ, Osborne MP, Tsacopoulos M (1994) The composition of the interstitial fluid in the retina of the honeybee drone: implications for the supply of substrates of energy metabolism from blood to neurones. Proc R Soc Lond B 257: 9–58PubMedGoogle Scholar
  8. Chen A, Wagner R (1992) Haemolymph constituents of the stable flyStomoxys calcitrans. Comp Biochem Physiol 102: 133–137Google Scholar
  9. Crabtree B, Newsholme E (1970) The activities of proline dehydrogenase, glutamate dehydrogenase, aspartate-oxoglutarate aminotransferase and alanin-oxoglutarate aminotransferase in some insect flight muscles. Biochem J 117: 1019–1021PubMedGoogle Scholar
  10. Crailsheim K (1986) Dependence of protein metabolism on age and season in the honeybee (Apis mellifca carnica POLLM). J Insect Physiol 32: 629–634Google Scholar
  11. Crailsheim K (1990) The protein balance of the honey bee worker. Apidologie 21: 417–429Google Scholar
  12. Crailsheim K, Stolberg E (1989) Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). J Insect Physiol 35: 595–602Google Scholar
  13. Cailsheim K, Schneider L, Hrassnig N, Bühlmann G, Brosch U, Gmeinbauen R, Schöffmann B (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J Insect Physiol 38: 409–419Google Scholar
  14. DeGroot AP (1953) Protein and amino acid requirements of the honeybee (Apis mellifera L.). Physiol Comp Oecol 3: 197–285Google Scholar
  15. Ebadi R, Gary N, Lorenzen K (1980) Effects of carbon dioxide and low temperature narcosis on honey bees,Apis mellifera. Environ Entomol 9: 144–147Google Scholar
  16. ElShakaa SMA, Shahein A (1987) Changes with age in amino acids and some mineral constituents of worker honeybees. Ang Zool 3: 321–327Google Scholar
  17. Fallon A, Booth R, Bell L (1993) Applications of HPLC in biochemistry. In: Burdon RH, van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology, vol 17. Elsevier Science Publishers, B. V. Amsterdam, pp 185–192Google Scholar
  18. Florkin M, Jeuniaux Ch (1974) Hemolymph: composition. In: Rockstein M (ed) The physiology of insecta, vol 5, 2nd edn. Academic Press, New York, pp 255–307Google Scholar
  19. Haydak M (1934) Change in total nitrogen content during the life of the imago of the worker honeybee. J Agric Res 49: 21–28Google Scholar
  20. Hughes GJ, Frutiger S, Fonck C (1987) Quantitative high-performance liquid chromatographic analysis of Dabsyl-amino acids within 14 min. J Chromatogr 389: 327–333PubMedGoogle Scholar
  21. Knecht R, Chang J (1986) Liquid chromatographic determination of amino acids after gas-phase hydrolysis and derivatisation with Dimethylamino-azobenzenesulfonyl Chloride. Anal Chem 58: 2375–2379PubMedGoogle Scholar
  22. Lass A, Crailsheim K (1996) Influence of age and caging upon protein metabolism, hypopharyngeal glands and trophallactic behaviour in the hiney bee (Apis mellifera L.). Ins Soc 43: 347–358Google Scholar
  23. Lin J, Lai Ch (1980) High performance liquid chromatographic determination of naturally occurring primary and secondary amines with dabsyl chloride. Anal Chem 52: 630–635PubMedGoogle Scholar
  24. Mc Lellan AR (1976) The amino acid content of adult worker honeybees. J Apic Res 15: 124–127Google Scholar
  25. Moritz B, Crailsheim K (1987) Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). J Insect Physiol 33: 923–931Google Scholar
  26. Nachtigall W, Rothe U, Feller P, Jungmann R (1989) Flight of the honey bee. III. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption. J Comp Physiol B 158: 729–737Google Scholar
  27. Rothe U, Nachtigall W (1989) Flight of honey bee. IV. Respiratory quotients and metabolic rates during sitting, walking and flying. J Comp Physiol B 158: 739–749Google Scholar
  28. Pant R, Agrawal H (1964) Free amino acids of the haemolymph of some insects. J Ins Physiol 10: 443–446Google Scholar
  29. Robinson G, Visscher P (1984) Effect of low temperature narcosis on honey bee (Hymenoptera: apidae) foraging behaviour. Florida Entomolgist 67: 568–570Google Scholar
  30. Rösch GA (1925) Untersuchungen über die Arbeitsteilung im Bienenstaat. I. Teil: Die Tätigkeiten im normalen Bienenstaate und ihre Beziehungen zum Alter der Arbeitsbienen. Z Vergl Physiol 2: 571–631Google Scholar
  31. Sachs L (1972) Statistische Auswertungsmethoden, 3. Aufl. Springer, Berlin Heidelberg New York, S 230–238Google Scholar
  32. Sacktor B (1974) Biological oxidations and energetics in insect mitochondria. In: Rockstein M (ed) The physiology of insecta, vol. 4, 2nd edn. Academic Press, New York, pp 271–353Google Scholar
  33. Sacktor B, Childress C (1967) Metabolism of proline in insect flight muscle and its significance in stimulating the oxidation of pyruvate. Arch Biochim Biophys 120: 583–588Google Scholar
  34. Sinitzky N, Lewtschenko I (1971) Der Gehalt an Eiweiß und freien Aminosäuren in der Hämolymphe der Arbeitsindividuen der Honigbiene. 23th Intern. Apimondia Congreß Moskau pp 361–367Google Scholar
  35. Stocchi V, Palma F, Piccoli G, Biagiarelli M, Magnani M, Masat L, Cucchiarini L (1992) Analysis of amino acids as DABS-derivatives with a sensitivity to the femtomole level using RP-HPLC narrow-bore columns. Amino Acids 3: 303–309Google Scholar
  36. Tsacopoulos M (1995) Metabolite exchanges and signal trafficking between glial cells and photoreceptor-neurons in the honeybee retina. Verh Dtsch Zool Ges 88.2: 53–59Google Scholar
  37. Tsacopoulos M, Veuthey AL, Saravelos SG, Perrottet P, Tsoupras G (1994) Glial cells transform glucose to alanine, which fuels neurones in the honeybee retina. J Neuroscience 14: 1339–1351Google Scholar
  38. Wang D, Möller F (1970) Comparison of the free amino acid composition in the haemolymph of healthy and Nosema infected female honeybees. J Invert Pathol 15: 202–206Google Scholar
  39. Zebe E, Gäde G (1993) Flight metabolism in the African fruit beetle,Pachnoda sinuata. J Comp Physiol 163: 107–112Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • K. Crailsheim
    • 1
  • B. Leonhard
    • 1
  1. 1.Institut für ZoologieKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations