Advertisement

Mathematische Annalen

, Volume 187, Issue 1, pp 1–8 | Cite as

The dual ofC(S,F)

  • G. W. Johnson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartle, R. G.: A general bilinear vector integral. Studia Math.15, 337–352 (1956).Google Scholar
  2. 2.
    Day, M. M.: Normed linear spaces. Ergebnisse der mathematik, Heft 21, Berlin 1962.Google Scholar
  3. 3.
    Gil de Lamadrid, J.: Measures and tensors. Trans. Amer. Math. Soc.114, 98–121 (1966).Google Scholar
  4. 4.
    Goodrich, R. K.: A Riesz representation theorem in the setting of locally convex spaces. Trans. Amer. Math. Soc.131, 246–258 (1968).Google Scholar
  5. 5.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucleaires. Mem. Amer. Math. Soc.16 (1955).Google Scholar
  6. 6.
    Johnson, G. W.: Integral representations of certain linear operators. Thesis, U. of Minnesota (1968).Google Scholar
  7. 7.
    -- Integral representations of certain linear operators, submitted.Google Scholar
  8. 8.
    Kelley, J. L., Namioka, I., Donoghue, W. F., Jr., Lucas, K. R., Pettis, B. J., Poulsen, E. T., Price, G. B., Robertson, W., Scott, W. R., Smith, K. T.: Linear topological spaces. Princeton, N.J.: D. Van Nostrand Co., 1963.Google Scholar
  9. 9.
    Schaefer, H. H.: Topological vector spaces. New York: Macmillan 1966.Google Scholar
  10. 10.
    Singer, I.: Linear functionals on spaces of continuous mappings of a compact Hausdorff space into a Banach space. Rev. Math. Pures Appl.2, 309–315 (1957) (Russian).Google Scholar
  11. 11.
    Swong, K.: A representation theory of continuous linear maps. Math. Ann.155, 270–291 (1964).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • G. W. Johnson
    • 1
  1. 1.Department of MathematicsUniversity of NebraskaLincolnUSA

Personalised recommendations