Advertisement

Mathematische Annalen

, Volume 217, Issue 1, pp 59–67 | Cite as

Prevarieties and intertwined completeness of locally convex spaces

  • Steven F. Bellenot
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellenot, S.F.: Factorable bounded operators and Schwartz spaces. Proc. Amer. Math. Soc.42, 551–554 (1974)Google Scholar
  2. 2.
    Bellenot, S.F.: Ph. D. Thesis (Claremont Graduate School, 1974)Google Scholar
  3. 3.
    Berezanskii, I.A.: Inductively reflexive, locally convex spaces. Soviet Math. Doklady (Translations from Russian).9 (2), 1080–1082 (1968)Google Scholar
  4. 4.
    Davis, W.J., Figiel, T., Johnson, W.B., Pełczyński, A.: Factoring weakly compact operators. J. Functional Analysis17, 311–327 (1974)Google Scholar
  5. 5.
    Day, M.M.: Normed linear spaces. 3rd ed. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  6. 6.
    Diestel, J., Morris, S.A., Saxon, S.A.: Varieties of linear topological spaces. Trans. Amer. Math. Soc.172, 207–230 (1972)Google Scholar
  7. 7.
    Dubinsky, E., Ramanujan, M.S.: On λ-nuclearity. Mem. Amer. Math. Soc. no. 128Google Scholar
  8. 8.
    Enflo, P.: Banach spaces which can be given an equivalent uniformly convex norm. Israel J. Math.13, 281–288 (1972)Google Scholar
  9. 9.
    Henson, W., Moore, L.C., Jr.: The theory of nonstandard topological vector spaces. Trans. Amer. Math. Soc.172, 405–435 (1972)Google Scholar
  10. 10.
    Henson, W., Moore, L.C., Jr.: Invariance of the nonstandard hulls of locally convex spaces. Duke Math. J.40, 193–206 (1973)Google Scholar
  11. 11.
    Horváth, J.: Topological vector spaces and distributions, Vol. 1. Reading, Mass: Addison-Wesley 1966Google Scholar
  12. 12.
    James, R.C.: Super-reflexive Banach spaces. Can. J. Math.24, 896–904 (1972)Google Scholar
  13. 13.
    Köthe, G.: Topological vector spaces, I. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  14. 14.
    Pietsch, A.: Nuclear locally convex spaces. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  15. 15.
    Pietsch, A.: Ideale vonS p-operatoren in Banachräumen. Studia Math.38, 59–69 (1970)Google Scholar
  16. 16.
    Pietsch, A.: Adjungierte normierten operatorenideale. Math. Nach.48, 189–211 (1971)Google Scholar
  17. 17.
    Raman, P.K.: On a class of reflexive spaces related to Ulam's conjecture on measurable cardinals. J. Reine Angew. Math.245, 188–200 (1970)Google Scholar
  18. 18.
    Ramanujan, M.S.: Power series spaces Λ(α) and associated Λ(α)-nuclearity. Math. Ann.189, 161–168 (1970)Google Scholar
  19. 19.
    Robertson, A.P., Robertson, W.: Topological vector spaces. 2nd ed. London: Cambridge University Press 1973Google Scholar
  20. 20.
    Robinson, W.: On Λ(α)-nuclearity. Duke Math. J.40, 541–546 (1973)Google Scholar
  21. 21.
    Saxon, S.A.: Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology. Math. Ann.182, 87–106 (1972)Google Scholar
  22. 22.
    Schaeffer, H.H.: Topological vector spaces. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  23. 23.
    Terzioglu, T.: On Schwartz spaces. Math. Ann.182, 236–242 (1969)Google Scholar
  24. 24.
    Hogbe-Nlend, H.: Topologies et bomologies nucléaires associés applications. Ann. Inst. Fourier (Grenoble)4 (23), 89–104 (1973)Google Scholar
  25. 25.
    Jarchow, H., Swart, J.: On Mackey convergence in locally convex spaces. Israel J. Math.16, 150–158 (1973)Google Scholar
  26. 26.
    Valdivia, M.: A class of precompact sets in Banach spaces. J. Reine Angew. Math. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Steven F. Bellenot
    • 1
  1. 1.Claremont Graduate School and Harvey Mudd CollegeClaremontUSA

Personalised recommendations