Mathematische Annalen

, Volume 159, Issue 4, pp 285–308 | Cite as

Non real fieldsk and infinite dimensionalk-vectorspaces (quadratic forms and linear topologies, II)

  • Herbert Gross
  • H. R. Fischer


Quadratic Form Linear Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Birch, Lewis, Murphy: Simultaneous quadratic forms. Am. J. Math.84, 110–115 (1962).Google Scholar
  2. [2]
    Chevalley, C.: Démonstration d'une hypothèse deM. Artin. Abhandl. math. Seminar hamburg. Univ. (1935) 73–75.Google Scholar
  3. [3]
    Fischer, H. R., andH. Gross: Quadratic forms and linear topologies I. Math. Ann.157, 296–325 (1964).Google Scholar
  4. [4]
    Kaplansky, I.: Quadratic forms. J. Math. Soc. Japan6, 200–207 (1953).Google Scholar
  5. [5]
    —— Forms in infinite-dimensional spaces. Anais Acad. Brazil. CienciasXXII (1950) 1–17. (For the content of this paper see Math. Rev.12, 238 (1951).)Google Scholar
  6. [6]
    Kneser, H.: Verschwindende Quadratsummen in Körpern. Jahrb. dtsch. Math. Ver.XLIV (1933) 143–146.Google Scholar
  7. [7]
    Siegel, Carl: Darstellung total positiver Zahlen durch Quadrate. Math. Z.11, 246–275 (1921).Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Herbert Gross
    • 1
  • H. R. Fischer
    • 1
  1. 1.Bozeman

Personalised recommendations