Advertisement

Mathematische Annalen

, Volume 167, Issue 2, pp 113–142 | Cite as

Über die Verbindbarkeit von verdickbaren (n—1)-Zellen in topologischenn-Mannigfaltigkeiten

  • Werner Bos
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Alexander, J. W.: An example of a simply connected surface bounding a region which is not simply connected. Proc. Nat. Acad. Sci. U.S.10, 8–10 (1924).Google Scholar
  2. [2]
    Artin, E., andR. H. Fox: Some wild cells and spheres in the three dimensional space. Ann. Math. (2)49, 979–990 (1948).Google Scholar
  3. [3]
    Brown, M.: A proof of the generalized Schoenflies theorem. Bull. Am. Math. Soc.66, 74–76 (1960).Google Scholar
  4. [4]
    —— Locally flat imbeddings of topological manifolds. Ann. Math.75, 331–341 (1962).Google Scholar
  5. [5]
    ——, andH. Gluck: Stable structures on manifolds I, II, III. Ann. Math.79, 1–58 (1964).Google Scholar
  6. [6]
    Cantrell, J. C.: Almost locally flat embeddings ofS n−1 inS n. Bull. Am. Math. Soc.69, 716–718 (1963).Google Scholar
  7. [7]
    —— Non flat imbeddings ofS n−1 inS n. Michigan. Math. J.10, 359–362 (1963).Google Scholar
  8. [8]
    Connell, E. H.: Approximating stable homeomorphisms by piecewise linear ones. Ann. Math. (2)78, 326–338 (1963).Google Scholar
  9. [9]
    Fisher, G.: On the group of all homeomorphisms of a manifold. Trans. Am. Math. Soc.97, 193–212 (1960).Google Scholar
  10. [10]
    Gluck, H.: Homogeneity of certain manifolds. Michigan Math. J.11, 19–32 (1964).Google Scholar
  11. [11]
    Greathouse, C.: Locally flat strings. Bull. Am. Math. Soc.70, 415–418 (1964).Google Scholar
  12. [12]
    —— The equivalence of the annulus conjecture and the slab conjecture. Bull. Am. Math. Soc.70, 716–717 (1964).Google Scholar
  13. [13]
    Homma, T.: On the imbedding of Polyedra in manifolds. Yokohama Math. J. X; Heft 1, 2 (1962).Google Scholar
  14. [14]
    Kister, M.: Microbundles are fibre bundles. Bull. Am. Math. Soc.69, 854–857 (1963).Google Scholar
  15. [15]
    Mazur, B.: On embeddings of spheres. Bull. Am. Math. Soc.65, 59–65 (1959).Google Scholar
  16. [16]
    —— On embeddings of spheres. Acta Math.105, 1–17 (1961).Google Scholar
  17. [17]
    —— The method of infinite repetition in pure topology. Ann. Math.80, 201–227 (1964).Google Scholar
  18. [18]
    Milnor, J.: Theory of microbundles. (Vervielfältigtes Manuskript) Princeton University, Princeton.Google Scholar
  19. [19]
    —— Microbundles. Topology3, 53–80 (1964).Google Scholar
  20. [20]
    Morse, M.: Differentiable mappings in the Schoenflies theorem. Composition Math.14, 83–151 (1959).Google Scholar
  21. [21]
    —— A reduction of the Schoenflies extension problem. Bull. Am. Math. Soc.66, 113–115 (1960).Google Scholar
  22. [22]
    —— The dependence of the Schoenflies extension of an accessory parameter. J. Anal. Math.8, 209–271 (1961).Google Scholar
  23. [23]
    Schoenflies, A.: Beiträge zur Theorie der Punktmengen. Math. Ann.62, 286–328 (1906).Google Scholar
  24. [24]
    Stallings, J.: The piecewise-linear structure of euclidean space. Proc. Cambridge Phil. Soc.58, 481–488 (1962).Google Scholar
  25. [25]
    —— On topologically unknotted spheres. Ann. Math. (2)77, 490–503 (1963).Google Scholar
  26. [26]
    Gluck, H.: UnknottingS 1 inS 4. Bull. Am. Math. Soc.69, 91–94 (1963).Google Scholar
  27. [27]
    Cantrell, J. C., andC. H. Edwards Jr.: Almost locally polyhedral curves in euclideann-space. Trans. Am. Math. Soc.107, 451–457 (1963).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Werner Bos
    • 1
  1. 1.Institut für Angew. Mathematik69 Heidelberg

Personalised recommendations