Mathematische Annalen

, Volume 159, Issue 1, pp 1–43 | Cite as

Uniformization of Jungian local domains

  • Shreeram Abhyankar


Local Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abhyankar, S.: On the ramification of algebraic functions. Am. J. Math.77, 575–592 (1955).Google Scholar
  2. [2]
    —— Local uniformization on algebraic surfaces over ground fields of characteristicp ≠ 0. Ann. Math.63, 491–526 (1956). Corrections, Ann. Math.78, 202–203 (1963).Google Scholar
  3. [3]
    —— On the valuations centered in a local domain. Am. J. Math.78, 321–348 (1956).Google Scholar
  4. [4]
    —— Simultaneous resolution for algebraic surfaces. Am. J. Math.78, 761–790 (1956).Google Scholar
  5. [5]
    —— On the field of definition of a nonsingular birational transform of an algebraic surface. Ann. Math.65, 268–281 (1957).Google Scholar
  6. [6]
    —— Ramification theoretic methods in algebraic geometry. Princeton: Princeton University Press 1959.Google Scholar
  7. [7]
    —— Uniformization inp-cyclic extensions of algebraic surfaces over ground fields of characteristicp. Math. Ann.153, 81–96 (1964).Google Scholar
  8. [8]
    ——, andO. Zariski: Splitting of valuations in extensions of local domain. Proc. Nat. Acad. Sci. U.S.41, 84–90 (1955).Google Scholar
  9. [9]
    Chevalley, C.: On the theory of local rings. Ann. Math.44, 690–708 (1943).Google Scholar
  10. [10]
    Cohen, I. S.: On the structure and ideal theory of complete local rings. Trans. Am. Math. Soc.57, 54–106 (1946).Google Scholar
  11. [11]
    Jung, H. W. E.: Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen in der Umgebung einer Stelle. J. reine angew. Math.133, 289–314 (1908).Google Scholar
  12. [12]
    Krull, W.: Allgemeine Bewertungstheorie. J. reine angew. Math.167, 160–196 (1932).Google Scholar
  13. [13]
    —— Dimensionstheorie in Stellenringe. J. reine angew. Math.179, 204–226 (1938).Google Scholar
  14. [14]
    —— Der allgemeine Diskriminantensatz. Math. Z.45, 1–19 (1939).Google Scholar
  15. [15]
    Nagata, M.: Note on a chain condition for prime ideals. Mem. Coll. Sci. Univ. Kyoto32, 85–90 (1959).Google Scholar
  16. [16]
    —— Local Rings. New York: Interscience Publishers 1962.Google Scholar
  17. [17]
    Pontrijagin, L.: Topological Groups. Princeton: Princeton University Press 1952.Google Scholar
  18. [18]
    Sakuma, M.: Existence theorems of valuations centered in a local domain with preassigned dimension and rank. J. Sci. Hiroshima University21, 61–67 (1957).Google Scholar
  19. [19]
    van der Waerden, B. L.: Modern Algebra, vol. I. New York: Frederick Unger Publishing Company 1949.Google Scholar
  20. [20]
    —— Modern Algebra, vol. II. New York: Frederick Unger Publishing Company 1950.Google Scholar
  21. [21]
    Zariski, O.: A simple analytic proof of a fundamental property of birational transformations. Proc. Nat. Acad. Sci. U.S.35, 62–66 (1949).Google Scholar
  22. [22]
    —— Le problème de la réduction des singularités d'un variété algébrique. Bull. sci. math.78, 1–10 (1954).Google Scholar
  23. [23]
    ——, andP. Samuel: Commutative Algebra, vol. I. Princeton: Van Nostrand 1958.Google Scholar
  24. [24]
    —— —— Commutative Algebra, vol. II. Princeton: Van Nostrand 1960.Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Shreeram Abhyankar
    • 1
  1. 1.Lafayette

Personalised recommendations