Advertisement

Mathematische Annalen

, Volume 219, Issue 2, pp 147–158 | Cite as

Markovian master equations. II

  • E. B. Davies
Article

Abstract

We prove some theorems on the behaviour of solutions of master equations in the weak coupling limit, obtaining an exponential decay law under more general conditions than in an earlier paper. As well as applying the theory to a new type of example, we analyse some previously unstudied aspects of the dissipative behaviour.

Keywords

General Condition Exponential Decay Early Paper Master Equation Weak Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bongaarts, P. J. M., Fannes, M., Verbeure, A.: A remark on ergodicity, dissipativity, return to equilibrium. Physica68, 587–594 (1973)Google Scholar
  2. 2.
    Chernoff, P. R.: Note on product formulae for operator semigroups. J. Functional Anal.2, 238–242 (1968)Google Scholar
  3. 3.
    Davies, E. B.: The harmonic oscillator in a heat bath. Commun. math. Phys.33, 171–186 (1973)Google Scholar
  4. 4.
    Davies, E. B.: Dynamics of a multi-level Wigner-Weisskopf atom. J. Math. Phys.15, 2036–2041 (1974)Google Scholar
  5. 5.
    Davies, E. B.: Markovian master equations. Commun. math. Phys.39, 91–110 (1974)Google Scholar
  6. 6.
    Haake, F.: Statistical treatment of open systems by generalised master equations. Springer Tracts in Modern Physics, Vol. 66. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  7. 7.
    Kato, T.: Wave operators and similarity for some non-self-adjoint operators. Math. Ann.162, 258–279 (1962)Google Scholar
  8. 8.
    Presutti, E., Scacciatelli, E., Sewell, G. S., Wanderlingh, F.: Studies in theC*-algebraic theory of non-equilibrium statistical mechanics. J. Math. Phys.13, 1085–1098 (1972)Google Scholar
  9. 9.
    Prigogine, I.: The statistical interpretation of non-equilibrium entropy. In: Cohen, E. G. D., Thirring, W. (Eds.): The Boltzmann equation, theory, and applications. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  10. 10.
    Yosida, K.: Functional analysis. Berlin, Heidelberg, New York: Springer 1965Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • E. B. Davies
    • 1
  1. 1.Mathematical InstituteOxfordEngland

Personalised recommendations