Advertisement

Mathematische Annalen

, Volume 219, Issue 2, pp 127–137 | Cite as

The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex

  • Alan T. Huckleberry
Article

Keywords

Manifold Levi Problem Pseudoconvex Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreotti, A., Stoll, W.: Analytic and algebraic dependence of meromorphic functions. Lecture Notes in Mathematics 234 (1971)Google Scholar
  2. 2.
    Behnke, H., Stein, K.: Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann.120, 430–461 (1948)Google Scholar
  3. 3.
    Freeman, M.: Local complex foliations of real submanifolds. Math. Ann.209, 1–30 (1974)Google Scholar
  4. 4.
    Grauert, H.: On Levi's problem and the imbedding of real-analytic manifolds. Ann. Math.68, 460–472 (1958)Google Scholar
  5. 5.
    Grauert, H.: Die Bedeutung des Levischen Problems für die analytische und algebraische Geometrie. Proc. Int. Cong. Math. Stockholm 86–101 (1962)Google Scholar
  6. 6.
    Grauert, H.: Bemerkenswerte pseudokonvexe Mannigfaltigkeiten. Math. Z.81, 377–391 (1963)Google Scholar
  7. 7.
    Huckleberry, A., Nirenberg, R.: Onk-pseudoflat complex spaces. Math. Ann.200, 1–10 (1973)Google Scholar
  8. 8.
    Huckleberry, A., Stoll, W.: On the thickness of the Shilov boundary. Math. Ann.207, 213–231 (1974)Google Scholar
  9. 9.
    Huckleberry, A.: Über Funktionenkörper auf komplexen Mannigfaltigkeiten. Math. Inst. Univ. Münster. Schriftenreihe 2. Serie, Heft 9 (1975)Google Scholar
  10. 10.
    Kuhlmann, N.: Komplexe Basen zu quasieigentlichen holomorphen Abbildungen. Comm. Math. Helv.48, 340–353 (1973)Google Scholar
  11. 11.
    Morimoto, A.: Non-compact complex Lie groups without non-constant holomorphic functions. Proceedings of the conference on complex analysis. Minneapolis 242–256 (1964)Google Scholar
  12. 12.
    Narasimhan, R.: The Levi problem for complex spaces. I. MA142, 355–365 (1961)Google Scholar
  13. 13.
    Remmert, R.: Sur les espaces analytique holomorphiquement separables et holomorphiquement convexes. C. R. Acad. Sci. Paris243, 118–121 (1956)Google Scholar
  14. 14.
    Remmert, R.: Projektionen analytischer Mengen. Math. Ann.130, 410–441 (1956)Google Scholar
  15. 15.
    Remmert, R.: Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann.133, 328–370 (1957)Google Scholar
  16. 16.
    Sommer, F.: Komplex-analytische Blätterung reeller Hyperflächen. Math. Ann.136, 392–411 (1959)Google Scholar
  17. 17.
    Stein, K.: Analytische Zerlegungen komplexer Räume. Math. Ann.132, 63–93 (1956)Google Scholar
  18. 18.
    Stoll, W.: Normal families of divisors. Math. Zeit.84, 154–218 (1964)Google Scholar
  19. 19.
    Tomassini, G.: Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali di una varietà complessa. Ann. Sc. Norm. Sup. Pisa20, 31–43 (1966)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Alan T. Huckleberry
    • 1
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA

Personalised recommendations