Advertisement

Mathematische Annalen

, Volume 172, Issue 1, pp 1–16 | Cite as

Function systems

  • B. Schweizer
  • A. Sklar
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Clifford, A. H., andG. B. Preston: The algebraic theory of semigroups. I. Am. Math. Soc. Math. Surveys No. 7, Providence, 1961.Google Scholar
  2. [2]
    Cohn, P. M.: Universal algebra. New York, Evanston, London: Harper & Row. 1965.Google Scholar
  3. [3]
    Eilenberg, S., andS. MacLane: General theory of natural equivalences. Trans. Am. Math. Soc.58, 231–294 (1945).Google Scholar
  4. [4]
    Kurosh, A. G., A. Kh. Livshits, andE. G. Shul'geifer: On the foundations of the theory of categories. Russian Math. Surveys15, No. 6, 1–46 (1960).Google Scholar
  5. [5]
    MacLane, S.: Categorical algebra. Bull. Am. Math. Soc.71, 40–106 (1965).Google Scholar
  6. [6]
    Menger, K.: Tri-operational algebra. Reports of a Math. Colloq., 2nd series, issue 5–6, 3–10 (1945).Google Scholar
  7. [7]
    —— An axiomatic theory of functions and fluents. The axiomatic method. L. Henkin et al, Eds., 454–473. Amsterdam: North-Holland Publishing Co. 1959.Google Scholar
  8. [8]
    —— The algebra of functions: past, present, future. Rend. Mat.20, 409–430 (1961).Google Scholar
  9. [9]
    Schweizer, B., andA. Sklar: The algebra of functions. Math. Ann.139, 366–382 (1960).Google Scholar
  10. [10]
    —— —— The algebra of functions. II. Math. Ann.143, 440–447 (1961).Google Scholar
  11. [11]
    —— —— The algebra of functions. III. Math. Ann.161, 171–196 (1965).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • B. Schweizer
    • 1
  • A. Sklar
    • 2
  1. 1.Department of MathematicsUniversity of MassachusettsAmherst
  2. 2.Department of MathematicsIllinois Institute of TechnologyChicago 16

Personalised recommendations