Advertisement

Mathematische Annalen

, Volume 204, Issue 3, pp 177–188 | Cite as

Subjectivity results for non-linear mappings from a Banach space to it's dual

  • P. M. Fitzpatrick
Article

Keywords

Banach Space Subjectivity Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brezis, H.: Équations et inéquations non-linéaires dans les espaces en dualite. Ann. Inst. Fourier, Grenoble,XVIII, 115–175 (1968).Google Scholar
  2. 2.
    Brezis, H., Crandall, M.G., Pazy, A.: Perturbations of nonlinear maximal monotone sets in Banach spaces. Comm. Pure Appl. Math.XXIII, 123–144 (1970).Google Scholar
  3. 3.
    Browder, F.E.: Non-linear operators and non-linear equations of evolution in Banach spaces. Proc. Amer. Math. Soc. Symposium on Non-linear Analysis, April 1968.Google Scholar
  4. 4.
    Browder, F.E.: Non-linear maximal monotone operators in Banach spaces. Math. Ann.175, 89–113 (1968).Google Scholar
  5. 5.
    Browder, F.E.: Existence theorems for non-linear partial differential equations. Proc. Symp. Pure Math. (Berkeley)16, 1–60 (1968).Google Scholar
  6. 6.
    Browder, F.E.: Non-linear elliptic boundary value problems. Bull. Am. Math. Soc.19, 862–874 (1963).Google Scholar
  7. 7.
    Browder, F.E.: Mapping theorems for noncompact non-linear operators in Banach spaces. Proc. Nat. Acad. Sci., U.S.A.54, 337–342 (1965).Google Scholar
  8. 8.
    Cronin, J.: Fixed points and topological degree in non-linear analysis. Math. Surveys, No.11 (1964).Google Scholar
  9. 9.
    De Figueiredo, G.: Lecture notes in non-linear functional analysis. Univ. of Maryland (1967).Google Scholar
  10. 10.
    Fitzpatrick, P.M.: A generalized degree for the uniform limit of A-proper mappings. J. Math. Anal. Appl.35, 536–552 (1971).Google Scholar
  11. 11.
    Hess, P.: On non-linear mappings of monotone type homotopic to odd operators. J. of Funct. Anal. (to appear).Google Scholar
  12. 12.
    Kacurovski, R.I.: On monotone operators and convex functionals. Uspehi Mat. Nauk.15, (4), 213–215 (1960).Google Scholar
  13. 13.
    Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  14. 14.
    Kato, T.: Demicontinuity, hemicontinuity, and monotonicity. Bull. Am. Math. Soc.73, 886–889 (1967).Google Scholar
  15. 15.
    Kuratowski, K.: Sur les espaces complets. Fundamenta Math.15, 301–309 (1930).Google Scholar
  16. 16.
    Leray, J.: Topologie des espaces abstraits de M. Banach. Comptes Rendues de l'Acedemie Sciences (Paris) 1082–1084 (1935).Google Scholar
  17. 17.
    Necas, J.: A remark on the Fredholm alternative for non-linear operators with applications to general Hammerstein equations (to appear).Google Scholar
  18. 18.
    Nussbaum, R.D.: The fixed point index and fixed point theorems fork-set contractions. Univ. of Chicago, Ph. D. Thesis, 1969.Google Scholar
  19. 19.
    Minty, G.J.: Monotone (non-linear) operators in Hilbert space. Duke Math. J.29, 341–346 (1962).Google Scholar
  20. 20.
    Minty, G.J.: On a “monotonicity” method for the solution of nonlinear equations in Banach spaces. Proc. Nat. Acad. Sci., U.S.A.50, 1038–1041 (1963).Google Scholar
  21. 21.
    Petryshyn, W.V.: Remarks on surjectivity theorems for odd A-proper mappings and their generalizations (to appear).Google Scholar
  22. 22.
    Rockafellar, R.T.: Local boundedness of non-linear maximal monotone operators. Mich. Math. J. 397–407 (1969).Google Scholar
  23. 23.
    Troyanski, S.L.: On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. Studia Math.37, 173–180 (1971).Google Scholar
  24. 24.
    Zarantonello, E.H.: Solving functional equations by contractive averaging, Tech. Rep. No. 160, U.S. Army Research Center, Madison, Wis., 1960.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • P. M. Fitzpatrick
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations