Advertisement

Mathematische Annalen

, Volume 217, Issue 2, pp 97–112 | Cite as

Symmetry in Fourier-Stieltjes algebras

  • John R. Liukkonen
  • Michael W. Mislove
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslander, L., Moore, C.C.: Unitary representations of solvable Lie groups. Mem. Amer. Math. Soc. No.62, 199 (1966)Google Scholar
  2. 2.
    Bourbaki, N., Livre, VI. Integration, 285 pp. Paris: Hermann 1952Google Scholar
  3. 3.
    Braconnier, J.: Sur les groups topologiques localement compacts. J. Math. Pures Appl.27, (9) 1–85 (1948)Google Scholar
  4. 4.
    Brown, G., Moran, W.: On the Shilov boundary of a measure algebra. Bull. London Math. Soc.3, 197–203 (1971)Google Scholar
  5. 5.
    Dixmier, J.: Les C*algèbres et leurs représentations. Cahiers Scientifiques, Fasc. 29, 390 pp. Paris: Gauthier-Villars 1964Google Scholar
  6. 6.
    Dixmier, J.: Les algèbres d'operateurs l'espace hilbertien, 2e-edition. Paris: Gauthier-Villars 1969Google Scholar
  7. 7.
    Ernest, J.: Hopf von Neumann algebras. Functional Analysis. Thompson Book Company, Washington, D.C. pp. 195–215. London: Academic Press 1967Google Scholar
  8. 8.
    Eymard, P.: L'algebra de Fourier d'un group localement compact. Bull. Soc. Math. France92, 181–236 (1964)Google Scholar
  9. 9.
    Grosser, S., Moskowitz, M.: On central topological groups. Trans. Amer. Math. Soc.127, 317–340 (1967)Google Scholar
  10. 10.
    Halmos, P.: A Hilbert space problem book, 365 pp. Princeton, N.J.: D. Van Nostrand Co., 1967Google Scholar
  11. 11.
    Hewitt, E., Ross, K.: Abstract harmonic analysis, Vol. I. New York: Academic Press, 1963Google Scholar
  12. 12.
    Hochschild, G.: The structure of Lie groups, 230 pp. San Francisco: Holden Day, 1965Google Scholar
  13. 13.
    Hofmann, K.H., Mostert, P.S.: Splitting in topological groups. Mem. Amer. Math. no.43, 75 (1963)Google Scholar
  14. 14.
    Kleppner, A., Lipsman, R.: The Plancherel formula for group extensions. Ann. Sci. de l'École Normal Supérieure, 4e serie, t.5 459–516 (1972)Google Scholar
  15. 15.
    Mackey, G.: The theory of group representations (mimeographed notes). University of Chicago 1955Google Scholar
  16. 16.
    McMullen, J.: Extensions of positive-definite functions. Mem. Amer. Math. Soc.117, 71 (1972)Google Scholar
  17. 17.
    Montgomery, D., Zippin, L.: Topological transformation groups, 282 pp. New York: Wiley Interscience, 1955Google Scholar
  18. 18.
    Murakami, S.: Remarks on the structure of maximally almost periodic groups. Osaka Math. Jour.2, 119–129 (1950)Google Scholar
  19. 19.
    Ragozin, D.: Rotation invariant measure algebras on Euclidean space. Indiana Journal of Math.,23, 1139–1154 (1974)Google Scholar
  20. 20.
    Rieffel, M.: Square integrable representations of Hilbert algebras. Jour. Func. Anal.3, 265–300 (1969)Google Scholar
  21. 21.
    Rieffel, M.: Induced representations of C*-algebras. Advances in Math.13, 176–257 (1974)Google Scholar
  22. 22.
    Rudin, W.: Fourier analysis on groups. New York: Wiley Interscience 1962Google Scholar
  23. 23.
    Sakai, S.: C*-algebras and W*-algebras, 256 pp. Berlin Heidelberg New York: Springer 1971Google Scholar
  24. 24.
    Taylor, J.L.: Measure algebras. Regional Conferences Series in Math. No. 16, 108 pp. Amer. Math. Soc., Providence, 1972Google Scholar
  25. 25.
    Topping, D.: Lecture notes on Von Neumann algebras, 119 pp. Tulane University Lecture Notes, 1969Google Scholar
  26. 26.
    Walter, M.: W*-algebras and non-abelian harmonic analysis. Jour. Func. Anal.11, 17–38 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • John R. Liukkonen
    • 1
  • Michael W. Mislove
    • 1
  1. 1.Department of MathematicsTulane UniversityNew OrleansUSA

Personalised recommendations