Advertisement

Mathematische Annalen

, Volume 132, Issue 5, pp 404–411 | Cite as

Nilpotenzkriterien

  • Hans-Jürgen Hoehnke
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baer, R.: Kriterien für die Existenz eines Einselements in Ringen. Math. Z.56, 1–17 (1952).Google Scholar
  2. Hopkins, Ch.: [1]Rings with minimal condition for left ideals. Ann. Math.40, 712–730 (1939).Google Scholar
  3. [2]Nil-rings with minimal condition for admissible left ideals. Duke Math. J.4, 664–667 (1938).Google Scholar
  4. Jacobson, N.: The radical and semi-simplicity for arbitrary rings. Amer. J. Math.67, 300–320 (1945).Google Scholar
  5. Köthe, G.: Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollständig reduzibel ist. Math. Z.32, 161–186 (1930).Google Scholar
  6. Levitzki, J.: [1]On the radical of a general ring. Bull. Amer. Math. Soc.49, 462–466 (1943).Google Scholar
  7. [2]Semi-nilpotent ideals. Duke Math. J.10, 553–556 (1943).Google Scholar
  8. Mori, S.: Über eindeutige Reduktion von Idealen in Ringen ohne Teilerkettensatz. J. Sci. Hiroshima Univ. A,3, 275–318 (1933).Google Scholar
  9. Perlis, S.: A characterization of the radical of an algebra. Bull. Amer. Math. Soc.48, 128–132 (1942).Google Scholar

Copyright information

© Springer-Verlag 1957

Authors and Affiliations

  • Hans-Jürgen Hoehnke
    • 1
  1. 1.Halle (Saale)

Personalised recommendations