Mathematische Annalen

, Volume 247, Issue 3, pp 255–274 | Cite as

A Fredholm determinant theory forp-summing maps in Banach spaces

  • Hermann König


Fredholm Determinant Determinant Theory Fredholm Determinant Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunford, N., Schwartz, J.T.: Linear Operators II. New York: Interscience 1973Google Scholar
  2. 2.
    Grothendieck, A.: La Théorie de Fredholm. Bull. Soc. Math. France84, 319–384 (1956)Google Scholar
  3. 3.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc.16, (1955)Google Scholar
  4. 4.
    Hille, E., Tamarkin, J.D.: On the theory of linear integral equations. Ann. of Math.31, 479–528 (1930)Google Scholar
  5. 5.
    Johnson, W.B., König, H., Maurey, B., Retherford, J.R.: Eigenvalues ofp-summing andl p-type operators in Banach spaces. J. Functional Analysis32, 353–380 (1979)Google Scholar
  6. 6.
    König, H.:s-numbers, eigenvalues and the trace theorem in Banach spaces. Stud. Math.67, 157–171 (1980)Google Scholar
  7. 7.
    Lewin, B.J.: Nullstellenverteilung ganzer Funktionen. Berlin: 1962Google Scholar
  8. 8.
    Nielsen, N.J.: On the trace of some operators. Stud. Math.43, 209–215 (1972)Google Scholar
  9. 9.
    Persson, A.: On some properties ofp-nuclear andp-integral operators. Stud. Math.33, 213–222 (1969)Google Scholar
  10. 10.
    Persson, A., Pietsch, A.:p-nukleare undp-integrale Abbildungen in Banachräumen. Stud. Math.33, 19–62 (1969)Google Scholar
  11. 11.
    Pietsch, A.: Nukleare lokalkonvexe Räume. Berlin: Akademie-Verlag 1969Google Scholar
  12. 12.
    Pietsch, A.: Operator ideals. Berlin: Verlag der Wissenschaften 1978Google Scholar
  13. 13.
    Pietsch, A.: Zur Fredholmschen Theorie in lokalkonvexen Räumen. Stud. Math.22, 161–179 (1963)Google Scholar
  14. 14.
    Pietsch, A.: Weyl numbers and eigenvalues of operators in Banach spaces. Math. Ann.247, 149–168 (1980)Google Scholar
  15. 15.
    Pogorzelski, W.: Integral equations and their applications. Oxford, New York: Pergamon 1966Google Scholar
  16. 16.
    Ruston, A.F.: On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space. Proc. Lond. Math. Soc.53, 109–124 (1948)Google Scholar
  17. 17.
    Smithies, F.: Integral equations. Cambridge, Cambridge University Press 1970Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Hermann König
    • 1
  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations