Skip to main content
Log in

Physiological role of branchial carbonic anhydrase in the shore crabCarcinus maenas

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Excretion of total CO2 and uptake of sodium and chloride ions across the branchial epithelium of the posterior gills of the shore crabCarcinus maenas, collected from Kiel Bay (Baltic Sea) in 1989, were measured using isolated perfused gill preparations. Total CO2 effluxes depended on the HCO -3 concentration of the internal perfusate in a saturable mode and were inhibited by internally and externally applied acetazolamide at 10−4 M. Potential differences between hemolymph space and medium did not change significantly during experimental treatments. Neither a bicarbonate gradient (6 mM) directed from the internal perfusate to external bath solution nor symmetrically applied 10−4 M acetazolamide significantly influenced the influxes of Na+ and Cl. Results confirmed the role of carbonic anhydrase in CO2 excretion but called into question the assumed functioning of the enzyme in branchial ion transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Aldridge, J. B., Cameron, J. N. (1979). CO2 exchange in the blue crab,Callinectes sapidus (Rathbun). J. exp. Zool. 207: 321–328

    Google Scholar 

  • Böttcher, K., Siebers, D., Becker, W. (1990a). Carbonic anhydrase in branchial tissues of osmoregulating shore crabs,Carcinus maenas. J. exp. Zool. 255: 251–261

    Google Scholar 

  • Böttcher, K., Siebers, D., Becker, W. (1990b). Localization of carbonic anhydrase in the gills ofCarcinus maenas. Comp. Biochem. Physiol. 96B: 243–246

    Google Scholar 

  • Broun, G., Selegny, E., Tran Minh, C., Thomas, D. (1970). Facilitated transport of CO2 across a membrane bearing carbonic anhydrase. Fedn eur. biochem. Soc. (FEBS) Lett. 7: 223–226

    Google Scholar 

  • Burnett, L. E. (1984). CO2 excretion across isolated perfused crab gills: facilitation by carbonic anhydrase. Am. Zool. 24: 253–264

    Google Scholar 

  • Burnett, L. E., Dunn, T. N., Infantino Jr., R. L. (1985). The function of carbonic anhydrase in crustacean gills. In: Gilles, R., Gilles-Baillien, M. (eds.) Transport processes, iono- and osmoregulation. Springer-Verlag, Berlin, p. 159–168

    Google Scholar 

  • Burnett, L. E., McMahon, B. R. (1985). Facilitation of CO2 excretion by carbonic anhydrase located on the surface of the basal membrane of crab gill epithelium. Respir. Physiol. 62: 341–348

    Google Scholar 

  • Burnett, L. E., Towle, D. W. (1990). Sodium uptake by perfused gills of the blue crab,Callinectes sapidus. Effects of ouabain and amiloride. J. exp. Biol. 149: 293–305

    Google Scholar 

  • Burnett, L. E., Woodson, P. B. J., Rietow, M. G., Vilicich, V. C. (1981). Crab gill intra-epithelial carbonic anhydrase plays a major role in hemolymph CO2 and chloride ion regulation. J. exp. Biol. 92: 243–254

    Google Scholar 

  • Cameron, J. N. (1978). NaCl balance in blue crabs,Callinectes sapidus, in fresh water. J. comp. Physiol. 123: 127–135

    Google Scholar 

  • Cameron, J. N. (1979a). Effects of inhibitors on ion fluxes, trans-gill potential and pH regulation in freshwater blue crabs,Callinectes sapidus (Rathbun). J. comp. Physiol. 133: 219–225

    Google Scholar 

  • Cameron, J. N. (1979b). Excretion of CO2 in water-breathing animals. Mar. Biol. Lett. 1: 3–13

    Google Scholar 

  • Ehrenfeld, J. (1974). Aspects of ionic transport mechanisms in crayfishAstacus leptodactylus. J. exp. Biol. 61: 57–70

    Google Scholar 

  • Gros, G., Forster, R. E., Dodgson, S. J. (1988). CO2/HCO 3 equilibria in the body. In: Häussinger, D. (ed.) PH Homeostasis, mechanisms and control. Academic Press, London, p. 203–231

    Google Scholar 

  • Gutknecht, J., Bisson, M. A., Tosteson, F. C. (1977). Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers. J. gen. Physiol. 69: 779–794

    Google Scholar 

  • Henry, R. P. (1984). The role of carbonic anhydrase in blood ion and acid-base regulation. Am. Zool. 24: 241–251

    Google Scholar 

  • Henry, R. P. (1987). Membrane-associated carbonic anhydrase in the gills of the blue crab,Callinectes sapidus. Am. J. Physiol. 252: 966–971

    Google Scholar 

  • Henry, R. P. (1988a). Subcellular distribution of carbonic anhydrase activity in the gills of the blue crab,Callinectes sapidus. J. exp. Zool. 245: 1–8

    Google Scholar 

  • Henry, R. P. (1988b). Multiple functions of carbonic anhydrase in the crustacean gill. J. exp. Zool. 248: 19–24

    Google Scholar 

  • Henry, R. P., Cameron, J. N. (1982a). The distribution and partial characterization of carbonic anhydrase in selected aquatic and terrestrial decapod crustaceans. J. exp. Zool. 221: 309–321

    Google Scholar 

  • Henry, R. P., Cameron, J. N. (1982b). Acid-base balance inCallinectes sapidus during acclimation from high to low salinity. J. exp. Biol. 101: 255–264

    Google Scholar 

  • Henry, R. P., Cameron, J. N. (1983). The role of carbonic anhydrase in respiration, ion regulation and acid-base balance in the aquatic crabCallinectes sapidus and the terrestrial crabGecarcinus lateralis. J. exp. Biol. 103: 205–225

    Google Scholar 

  • Henry, R. P., Wheatly, M. G. (1988). Dynamics of salinity adaptations in the euryhaline crayfishPacifasticus leniusculus. Physiol. Zoöl. 61: 260–271

    Google Scholar 

  • Maren, T. H. (1967). Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev. 47: 595–781

    Google Scholar 

  • Maren, T. H. (1977). Use of inhibitors in physiological studies of carbonic anhydrase. Am. J. Physiol. 232: 291–297

    Google Scholar 

  • Onken, H., Graszynski, K. (1989). Active Cl absorption by the Chinese crab (Eriocheir sinensis) gill epithelium measured by transepithelial potential difference. J. comp. Physiol. 159: 21–28

    Google Scholar 

  • Randall, D. J., Wood, C. M. (1981). Carbon dioxide excretion in the land crab (Cardisoma carnifex). J. exp. Zool. 218: 37–44

    Google Scholar 

  • Siebers, D., Lucu, C., Winkler, A., Dalla Venezia, L., Wille, H. (1986). Active uptake of sodium in the gills of the hyperregulating shore crabCarcinus maenas. Helgoländer Meeresunters. 40: 151–160

    Google Scholar 

  • Siebers, D., Winkler, A., Lucu, C., Thedens, G., Weichart, D. (1985). Na-K-ATPase generates an active transport potential in the gills of the hyperregulating shore crabCarcinus maenas. Mar. Biol. 87: 185–192

    Google Scholar 

  • Smith, R. G. (1988). Inorganic carbon transport in biological systems. Comp. Biochem. Physiol. 90: 639–654

    Google Scholar 

  • Truchot, J. P. (1975). Blood acid-base changes during experimental emersion and reimmersion of the intertidal crabCarcinus maenas (L.). Respir. Physiol. 23: 351–360

    Google Scholar 

  • Truchot, J. P. (1979). Mechanisms of the compensation of blood respiratory acid-base disturbances in the shore crab,Carcinus maenas (L.). J. exp. Zool. 210: 407–416

    Google Scholar 

  • Wheatly, M. G., Henry, R. P. (1987). Branchial and antennal gland Na+/K+-dependent ATPase and carbonic anhydrase activity during salinity acclimation of the euryhaline crayfishPacifastacus leniusculus. J. exp. Biol. 133: 73–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, K., Siebers, D., Becker, W. et al. Physiological role of branchial carbonic anhydrase in the shore crabCarcinus maenas . Mar. Biol. 110, 337–342 (1991). https://doi.org/10.1007/BF01344352

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344352

Keywords

Navigation