Skip to main content
Log in

Chemically mediated interactions between the red algaPlocamium hamatum (Rhodophyta) and the octocoralSinularia cruciata (Alcyonacea)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Interactions between the red algaPlocamium hamatum J. Agardh (Rhodophyta) and other benthic organisms including the alcyonacean soft coralSinularia cruciata (Tixier-Durivault) were investigated on an inshore fringing reef environment in whichP. hamatum was the dominant large fleshy alga. Field observations of sessile reef organisms including octocorals and sponges living in close proximity toP. hamatum revealed that varying degrees of tissue necrosis were suffered by the invertebrates when in physical contact with the alga. In order to establish whether the chemical constituents of the alga, especially chloromertensene, played a role in this necrosis, manipulative field experiments were carried out in the Pelorus Channel, Palm Island group (18°34′S; 146°29′E), North Queensland, Australia, in November and December 1988. The first experiment involved the relocation of healthy plants and soft corals into contact and non-contact situations on a mesh grid. In all cases of contact betweenP. hamatum andS. cruciata, the soft coral suffered tissue necrosis (n=6,p=0.0022). The second experiment had the same design, but involved the use of artificial “plants” both uncoated and coated with natural levels of chloromertensene, in contact withS. cruciata. In all cases of contact with coated treatments, necrosis was observed inS. cruciata (n=4,p=0.025). In cases where uncoated artificial fronds were placed in contact with soft corals,S. cruciata showed minor abrasion effects, but no appreciable necrosis. Coated treatments were not fouled by epiphytes during the experiment and were not consumed by predators. Uncoated treatments were rapidly reduced in size by predation and any remaining material was biofouled. These experiments thus demonstrated that the deleterious effects observed in soft corals in the field were caused by contact with the algaP. hamatum, that these effects were indeed chemically mediated by chloromertensene, and that physical contact without chemical intervention caused no such deleterious effects. This is the first experimental evidence which conclusively demonstrates allelopathy between an alga and other marine organisms and identifies the compound responsible for the observed allelopathic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bak, R. P. M., Borsboom, J. L. A. (1984). Allelopathic interaction between a reef coelenterate and benthic algae. Oecologia 63: 194–198

    Google Scholar 

  • Bak, R. P. M., Engel, M. S. (1979). Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community. Mar. Biol. 54: 341–352

    Google Scholar 

  • Bak, R. P. M., Sybesma, J., Van Duyl, F. C. (1981). The ecology of the tropical compound ascidianTrididemnum solidum. II. Abundance, growth and survival. Mar. Ecol. Prog. Ser. 6: 43–52

    Google Scholar 

  • Benayahu, Y., Loya, Y. (1981). Competition for space among coral reef sessile organisms at Eilat. Red Sea. Bull. mar. Sci. 31: 514–522

    Google Scholar 

  • Birkeland, C. (1977). The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. Proc. 3rd int. Symp. coral Reefs 1: 15–21. [Taylor, D. L. (ed.) School of Marine and Atmospheric Science, University of Miami]

    Google Scholar 

  • Bowden, B. F., Coll, J. C., Wright, A. D. (1989). Studies of Australian soft corals. XLIV. New diterpenes fromSinularia polydactyla (Coelenterata, Anthozoa, Octocorallia). Aust. J. Chem. 42: 757–763

    Google Scholar 

  • Carlson, D. J., Carlson, M. L. (1984). Reassessment of exudation by fucoid macroalgae. Limnol. Oceanogr. 29: 1077–1087

    Google Scholar 

  • Coll, J. C., Price, I. R., König, G. M., Bowden, B. F. (1987). Algal overgrowth of alcyonacean soft corals. Mar. Biol. 96: 129–135

    Google Scholar 

  • Coll, J. C., Skelton, B. W., White, A. H., Wright, A. D. (1988). Tropical marine algae. II. The structure determination of new halogenated monoterpenes fromPlocamium hamatum (Rhodophyta, Gigartinales, Plocamiaceae). Aust. J. Chem. 41: 1743–1753

    Google Scholar 

  • Connell, J. H. (1973). Population ecology of reef building corals. In: Jones, O. A., Endean, R. (eds.) Biology and geology of coral reefs. Vol. 2. Biology 1. Academic Press, New York, p. 205–245

    Google Scholar 

  • Conover, J. T., Sieburth, J. (1966). Effects of tannins excreted from Phaeophyta on planktonic animal survival in tide pools. Proc. 5th int. Seaweed Symp: 99–100. [Young, E. G., McLachlan, J. L. (eds.) Pergamon Press, Oxford]

    Google Scholar 

  • Dahl, A. L. (1974). The structure and dynamics of benthic algae in the coral reef ecosystem. Proc. 2nd int. coral Reef Symp. 1: 21–25. [Cameron, A. M. et al. (eds.) Great Barrier Reef Committee, Brisbane]

    Google Scholar 

  • Dart, J. K. G. (1972). Echinoids, algal lawn and coral recolonization. Nature, Lond. 239: 50–51

    Google Scholar 

  • De Ruyter van Stevenick, E. D., Van Mulekom, L. L., Breeman, A. M. (1988). Growth inhibition ofLobophora variegata (Lamouroux) Womersley by scleractinian corals. J. exp. mar. Biol. Ecol. 115: 169–178

    Google Scholar 

  • Fletcher, R. L. (1975). Heteroantagonism observed in mixed algal cultures. Nature, Lond. 253: 534–535

    Google Scholar 

  • Fogg, G. E. (1966). The extracellular products of algae. Oceanogr. mar. Biol. A. Rev. 4: 195–212

    Google Scholar 

  • Fox, L. R. (1981). Defense and dynamics in plant-herbivore systems. Am. Zool. 21: 853–864

    Google Scholar 

  • Glynn, P. W. (1973). Aspects of the ecology of coral reefs in the western Atlantic region. In: Jones, O. A., Endean, R. (eds.) Biology and geology of coral reefs. Vol. 2. Biology 1. Academic Press, New York, p. 271–324

    Google Scholar 

  • Gschwend, P. M., MacFarlane, J. K., Turner, K. A. (1985). Volatile halogenated organic compounds released to seawater from marine macroalgae. Science, N.Y. 227: 1033–1035

    Google Scholar 

  • Harlin, M. M. (1987). Allelopathy in marine macroalgae. CRC critical Rev. Pl. Sciences 5: 237–249

    Google Scholar 

  • Hay, M. E., Fenical, W. (1988). Marine plant-herbivore interactions: the ecology of chemical defenses. A. Rev. Ecol. Syst. 19: 111–145

    Google Scholar 

  • Hay, M. E., Fenical, W., Gustafson, K. (1987). Chemical defenses against diverse coral-reef herbivores. Ecology 68: 1581–1591

    Google Scholar 

  • Hellebust, J. A. (1975). Extracellular products. In: Stewart, W. D. P. (ed.) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford, 838–863

    Google Scholar 

  • Jackson, J. B. C. (1977). Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am. Nat. 111: 743–767

    Google Scholar 

  • Jackson, J. B. C., Buss, L. W. (1975). Allelopathy and spatial competition among coral reef invertebrates. Proc. natn. Acad. Sci. U.S.A. 72: 5160–5163

    Google Scholar 

  • Khfaji, A. K., Boney, A. D. (1979). Antibiotic effect of crustose germlings of the red algaChondrus crispus Stackh. on benthic diatoms. Ann. Bot. 43: 231–232

    Google Scholar 

  • Lewis, S. M. (1986). The role of herbivorous fishes in the organisation of a Caribbean reef community. Ecol. Monogr. 56: 183–200

    Google Scholar 

  • Maier, I., Müller, D. G. (1986). Sexual pheromones in algae. Biol. Bull. mar. biol. Lab., Woods Hole 170: 145–175

    Google Scholar 

  • McConnell, O. J., Hughes, P. A., Targett, N. M., Daley, J. (1982). Effects of secondary metabolites on feeding by the sea urchinLytechinus variegatus. J. chem. Ecol. 8: 1427–1453

    Google Scholar 

  • McLachlan, J., Craigie, J. (1966). Antialgal activity of some simple phenols. J. Phycol. 2: 133–135

    Google Scholar 

  • McNaughton, S. J., Wolf, L. L. (1979). General ecology. 2nd ed. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Paul, V. J., Fenical, W. (1985). Diterpenoid metabolites from Pacific marine algae of the order Caulerpales (Chlorophyta). Phytochem. 24: 2239–2243

    Google Scholar 

  • Paul, V. J., Hay, M. E., Duffy, J. E., Fenical W., Gustafson, K. (1987). Chemical defense in the seaweedOchtodes secundiramea (Montagne) Howe (Rhodophyta): effects of its monoterpenoid components upon diverse coral reef herbivores. J. exp. mar. Biol. Ecol. 114: 249–260

    Google Scholar 

  • Phillips, D. W., Towers, G. H. N. (1982). Chemical ecology of red algal bromophenols. I. Temporal, interpopulational and withinthallus measurements of lanosol levels inRhodomela larix (Turner) C. Agardh. J. exp. mar. Biol. Ecol. 58: 285–293

    Google Scholar 

  • Porter, J. W. (1974). Community structure of coral reefs on opposite sites of the isthmus of Panama. Science, N.Y. 186: 543–545

    Google Scholar 

  • Potts, D. C. (1977). Suppression of coral populations by filamentous algae within damselfish territories. J. exp. mar. Biol. Ecol. 28: 207–216

    Google Scholar 

  • Rice, E. L. (1984). Allelopathy. 2nd ed. Academic Press, New York

    Google Scholar 

  • Rosenthal, G. A., Jansen, D. H. (1979). Herbivores: their interaction with secondary plant metabolites. Academic Press, New York

    Google Scholar 

  • Russ, G. (1984). Distribution and abundance of herbivorous grazing fishes in the Great Barrier Reef. I. Levels of variability across the entire continental shelf. Mar. Ecol. Prog. Ser. 20: 23–34

    Google Scholar 

  • Sammarco, P. W. (1980). Diadema and its relationship to coral spat mortality: grazing, competition, and biological disturbance. J. exp. mar. Biol. Ecol. 45: 245–272

    Google Scholar 

  • Sammarco, P. W. (1982). Echiniod grazing as a structure force in coral communities: whole reef manipulations. J. exp. mar. Biol. Ecol. 61: 31–55

    Google Scholar 

  • Sammarco, P. W., Coll, J. C. (1988). The chemical ecology of alcyonarian corals. Bioorg. mar. Chem. 2: 87–116

    Google Scholar 

  • Sammarco, P. W., Coll, J. C., La Barre, S. (1985). Competitive strategies of soft corals (Coelenterata: Octocorallia): II. Variable defensive responses and susceptibility to scleractinian corals. J. exp. mar. Biol. Ecol. 91: 199–215

    Google Scholar 

  • Sammarco, P. W., Coll, J. C., La Barre, S., Willis, B. (1983) Allelopathic affects on selected scleractinian corals. Coral Reefs. 1: 173–178

    Google Scholar 

  • Sebens, K. P. (1976). The ecology of Caribbean sea anemones in Panama: utilization of space on a coral reef. In: Mackie, G. O. (ed.) Coelenerate ecology and behaviour. Plenum Press, New York, p. 67–77

    Google Scholar 

  • Sheppard, C. R. C. (1980). Coral cover, zonation and diversity on reef slopes of Chagos atolls and population structures of the major species. Mar. Ecol. Prog. Ser. 2: 193–205

    Google Scholar 

  • Sheppard, C. R. C. (1982). Coral populations on reef slopes and their major controls. Mar. Ecol. Prog. Ser. 7: 83–115

    Google Scholar 

  • Sieburth, J., Conover, J. T. (1965) Sargassum tannin, an antibiotic which retards fouling. Nature, Lond. 208: 52–53

    Google Scholar 

  • Sullivan, B., Faulkner, D. J., Webb, L. (1983). Siphonodictidine, a metabolite of the burrowing spongeSiphonodictyon sp. that inhibits coral growth. Science, N.Y. 221: 1175–1176

    Google Scholar 

  • Targett, N. M., Targett, T. E., Vrolijk, N. H., Ogden, J. C. (1986). Effect of macrophyte secondary metabolites on feeding preferences of the herbivorous parrotfishSparisoma radians. Mar. Biol. 92: 141–148

    Google Scholar 

  • Thompson, J. E. (1985). Exudation of biologically-active metabolites in the spongeAplysina fistularis. I. Biological evidence. Mar. Biol. 88: 23–26

    Google Scholar 

  • Vadas, R. L. (1979). Seaweeds: an overview; ecological and economic importance. Experientia. 35: 429–433

    Google Scholar 

  • Van Alstyne, K. L., Paul, V. J. (1989). The role of secondary metabolites in marine ecological interactions. Proc. 6th int. coral Reef Symp. 175–186. [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville.]

    Google Scholar 

  • Van Moorsel, G. W. N. M. (1985). Disturbance and growth of juvenile corals (Agaricia humilis andAgaricia agricites, Scleractinia) in natural habitats on the reef of Curaçao. Mar. Ecol. Prog. Ser. 24: 99–112

    Google Scholar 

  • Walker, F. T., Smith, M. McL. (1948). Seaweed culture. Nature, Lond. 162: 31–32

    Google Scholar 

  • Wells, R. J., Barrow, K. D. (1979). Acyclic diterpenes containing three enol acetate groups from the green algaChlorodesmis fastigata. Experientia 35: 1544–1545

    Google Scholar 

  • Whittaker, R. H., Feeney, P. P. (1971). Allelochemics: chemical interactions between species. Science, N.Y. 171: 757–770

    Google Scholar 

  • Wright, A. D. (1989). Chemical investigations of tropical marine algae. PhD thesis. James Cook University of North Queensland

  • Young, D. N., Howard, B. M., Fenical, W. (1980). Subcellular localization of brominated secondary metabolites in the red algaLaurencia snyderae. J. Phycol. 16: 182–185

    Google Scholar 

  • Zar, J. H. (1984). Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. F. Humphrey, Sydney

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Nys, R., Coll, J.C. & Price, I.R. Chemically mediated interactions between the red algaPlocamium hamatum (Rhodophyta) and the octocoralSinularia cruciata (Alcyonacea). Mar. Biol. 108, 315–320 (1991). https://doi.org/10.1007/BF01344346

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344346

Keywords

Navigation