Skip to main content
Log in

Interactive accumulation of mercury and selenium in the sea starAsterias rubens

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Interactions between mercury and selenium accumulation and subcellular binding inAsterias rubens (L.), collected in 1987 from Lille Bælt at Middelfart, Funen, Denmark, were investigated in laboratory experiments. Sea stars exposed to 10µg Hg l−1 for 30 d accumulated mercury in body wall, tube feet and stomach linearly with time at 1.2, 1.2 and 0.5µg Hg g−1 dry wt d−1, respectively. Mercury was accumulated in pyloric caeca and coelomic fluid initially at 1.4µg Hg g−1 dry wt d−1 and 9.4 ng Hg ml−1 d−1, respectively; after 10 d uptake rates decreased. Sea stars exposed to 75µg Se-SeO - -3 l−1 accumulated selenium linearly with time over 30 d in the stomach, pyloric caeca, tube feet and body wall at 2.0, 1.2, 1.2 and 0.6µg Se g−1 dry wt d−1. Sea stars exposed to 75µg Se-SeO - -4 l−1 maintained selenium levels in the coelomic fluid at 75µg Se l−1 over 30 d. Exposure to selenate did not alter the selenium concentrations in the tissues. Sea stars exposed concurrently to 75µg Se-SeO - -3 and 10µg Hg l−1 accumulated more mercury and selenium in tube feet and body wall than did sea stars exposed to the two elements alone. In pyloric caeca and stomach concurrent exposure reduced accumulation of both elements. Mercury was bound predominantly in the insoluble fraction of the tissues, and soluble mercury was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Ca. half of the selenium recovered was bound in the insoluble fraction, and soluble selenium was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Interaction between the two elements was exerted predominantly in the insoluble fraction of the tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ahsanullah, M., Brand, G. W. (1985). Effect of selenite and seleniferous fly-ash leachate on growth and viability of the marine amphipodAllorchestes compressa. Mar. Biol. 89: 245–248

    Google Scholar 

  • Apte, S. C., Howard, A. G., Morris, R. J., McCartney, M. J. (1986). Arsenic, antimony and selenium speciation during a spring phytoplankton bloom in a closed experimental ecosystem. Mar. Chem. 20: 119–130

    Google Scholar 

  • Armstrong, F. A. J., Uthe, F. J. (1971). Semi-automated determination of mercury in animal tissue. Atom. Absorp. Newsl. 10: 101–103

    Google Scholar 

  • Besten, P. J. den, Herwig, H. J., Zandee, D. I., Voogt, P. A. (1989). Cadmium accumulation and metallothionein-like proteins in the sea starAsterias rubens. Mar. envirl Res. 28: 163–166

    Google Scholar 

  • Bienvenue, E., Boudou, A., Desmazès, J. P., Gavach, C., Sandeaux, R., Seta, P. (1984). Transport of mercury compounds across bimolecular lipid membranes: effect of lipid composition, pH and chloride concentration. Chem. biol. Interactions 48: 91–101

    Google Scholar 

  • Binyon, J. (1978). Some observations upon the chemical composition of the starfishAsterias rubens L., with particular reference to strontium uptake. J. mar. biol. Ass. U.K. 58: 441–449

    Google Scholar 

  • Bjerregaard, P. (1988). Effect of selenium on cadmium uptake in selected, benthic invertebrates. Mar. Ecol. Prog. Ser. 48: 17–28

    Google Scholar 

  • Bjerregaard, P. (1990). Influence of physiological condition on cadmium transport from haemolymph to hepatopancreas inCarcinus maenas. Mar. Biol. 105: 17–28

    Google Scholar 

  • Broertjes, J. J. S., Jens, J. N., Oudheusden, D. van, Bruin, M. de, Voogt, P. A. (1982). Demonstration of nutrient flow in the starfishAsterias rubens (L.) with125I labelled proteins. Neth. J. Zool. 32: 472–478

    Google Scholar 

  • Broertjes, J. J. S., Posthuma, G., Beijnink, F. B., Voogt, P. A. (1980). The admission of nutrients from the digestive system into the heamal channels in the sea-starAsterias rubens (L.). J. mar. biol. Ass. U.K. 60: 883–890

    Google Scholar 

  • Chen, R. W., Whanger, P. D., Fang, S. C. (1974). Diversion of mercury binding in rat tissues by selenium: a possible mechanism of protection. Pharmac. Res. Communs 6: 571–579

    Google Scholar 

  • Cutter, G. A., Bruland, K. W. (1984). The marine biogeochemistry of selenium: a re-evaluation. Limnol. Oceanogr. 29: 1179–1192

    Google Scholar 

  • Cutter, G. A., Church, T. M. (1986). Selenium in western atlantic precipitation. Nature, Lond. 322: 720–722

    Google Scholar 

  • Davis, I. M., Russel, R. (1988). The influence of dissolved selenium compounds on the accumulation of inorganic and methylated mercury compounds from solution by the musselMytilus edulis and the plaicePleuronectes platessa. Sci. total Envir. 68: 197–205

    Google Scholar 

  • Egaas, E., Julshamn, K. (1978). A method for the determination of selenium and mercury in fish products using the same digestion procedure. Atom. Absorp. Newsl. 17: 135–138

    Google Scholar 

  • Fowler, S. W. (1990). Critical review of selected heavy metals and chlorinated hydrocarbon concentrations in the marine environment. Mar. envirl Res. 29: 1–64

    Google Scholar 

  • Fowler, S. W., Benayoun, G. (1976). Influence of environmental factors on selenium flux in two marine invertebrates. Mar. Biol. 37: 59–68

    Google Scholar 

  • Gutknecht, J. (1981). Inorganic mercury (Hg2+) transport through lipid bilayer membranes. J. Membrane Biol. 61: 61–66

    Google Scholar 

  • Kester, D. R. (1986). Chemical species in marine and eustuarine systems. In: Bernhard, M., Brinckman, F. E., Sadler, P. J. (eds.) The importance of chemical “speciation” in environmental processes. Dahlem Konferenzen, p. 275–299

  • Koeman, J. H., Peeters, W. H. M., Koudstaal-Hol, C. H. M., Tjioe, P. S., Goeij, J. J. M. de (1973). Mercury-selenium correlations in marine mammals. Nature, Lond. 245: 385–386

    Google Scholar 

  • Koeman, J. H., Ven, W. S. M. van de, Goeij, J. J. M. de, Tjioe, P. S., Haaften, J. L. van (1975). Mercury and selenium in marine mammals and birds. Sci. total Envir. 3: 279–287

    Google Scholar 

  • Komsta-Szumska, E., Chmielnicka, J. (1977). Binding of mercury and selenium in subcellular fractions of rat liver and kidneys following separate and joint administration. Arch. Toxic. 38: 217–228

    Google Scholar 

  • Komsta-Szumska, E., Chmielnicka, J., Piotrowski, J. K. (1976). The influence of selenium on binding of inorganic mercury by metallothionein in the kidney and liver of the rat. Biochem. Pharmac. 25: 2539

    Google Scholar 

  • Lucu, C., Skreblin, M. (1981). Evidence on the interaction of mercury and selenium in the shrimpPalaemon elegans. Mar. envirl Res. 5: 265–274

    Google Scholar 

  • Lunde, G. (1973). The presence of lipid-soluble compounds in marine oils. Biochim. biophys. Acta 304: 76–80

    Google Scholar 

  • Mackay, N. J., Kazacos, M. N., Williams, R. J., Leedow, M. I. (1975). Selenium and heavy metals in black marlin. Mar. Pollut. Bull. 6: 57–61

    Google Scholar 

  • Magos, L., Clarkson, T. W., Hudson, A. R. (1984). Differences in the effects of selenite and biological selenium on the chemical form and distribution of mercury after the simultaneous administration of HgCl2 and selenium to rats. J. Pharmac. exp. Ther. 228: 478–483

    Google Scholar 

  • Magos, L., Webb, M. (1980). The interactions of selenium with cadmium and mercury. CRC critical Rev. Toxic. 8: 1–42

    Google Scholar 

  • Martoja, R., Viale, D. (1977). Accumulation de granules de sélénium mercurique dans le foie d'odontocètes (Mammifères, cétacés): Un mécanisme possible de détoxication du méthylmercure par le sélénium. C. r. hebd. Séanc. Acad. Sci., Paris 285: 109–112

    Google Scholar 

  • Measures, C. I., Burton, J. D. (1980). The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic Ocean and their relationship to biological processes. Earth planet. Sci. Lett. 46: 385–396

    Google Scholar 

  • Measures, C. I. McDuff, R. E., Edmond, J. M. (1980). Selenium redox chemistry at Geosecs I re-occupation. Earth planet. Sci. Lett. 49: 102–108

    Google Scholar 

  • Norheim, G. (1987). Levels and interactions of heavy metals in sea birds from Svalbard and the Antarctic. Envir. Pollut. 47: 83–94

    Google Scholar 

  • Olafson, R. W., Kearns, A., Sim, R. G. (1979). Heavy metal induction of metallothionein synthesis in the hepatopancreas of the crabScylla serrata. Comp. Biochem. Physiol. 62B: 417–424

    Google Scholar 

  • Parizek, J., Ostadalova, I. (1967). The protective effect of small amounts of selenite in sublimate intoxication. Experientia 23: 142–143

    Google Scholar 

  • Patel, B., Chandy, J. P., Patel, S. (1988). Do selenium and glutathione inhibit the toxic effects of mercury in marine lamellibranchs? Sci. total Environ. 76: 147–165

    Google Scholar 

  • Pelletier, E. (1985). Mercury-Selenium interactions in aquatic organisms: a review. Mar. envirol. Res. 18: 111–132

    Google Scholar 

  • Pelletier, E. (1986). Modification de la bioaccumulation du sélénium chezMytilus edulis en présence du mercure organique et inorganique. Can. J. Fish. aquat. Sciences 43: 203–210

    Google Scholar 

  • Pelletier, E., Larocque, R. (1987). Bioaccumulation of mercury in starfish from contaminated mussels. Mar. Pollut. Bull. 18: 482–485

    Google Scholar 

  • Phillips, D. H. J. (1987). Toxic contaminants in the San Francisco Bay-Delta and their possible biological effects. Technical Report of the Aquatic Habitat Institute, 1301 South 46th St, Richmond, California 94804, USA

    Google Scholar 

  • Plas, A. J. van der, Jangoux, M., Voogt, P. A. (1984). A light and electron microscopial study of pyloric caeca ofAsterias rubens (Echinodermata: Asteroidea). Neth. J. Zool. 34: 144–158

    Google Scholar 

  • Roesijadi, G., Hall, R. E. (1981). Characterization of mercury-binding proteins from the gills of marine mussels exposed to mercury. Comp. Biochem. Physiol. 70C: 59–64

    Google Scholar 

  • Tusek-Znidaric, Skreblin, M., Pavicic, J., Kregar, I., Stegnar, P. (1986). Mercury binding proteins of the gills and digestive gland ofMytilis galloprovincialis. F.A.O. Fish. Rep. 334: 149–154

    Google Scholar 

  • Wadge, A., Hutton, M. (1987). The leachability and chemical speciation of selected trace elements in fly ash from coal combustion and refuse incineration. Envir. Pollut. 48: 85–99

    Google Scholar 

  • Wrench, J. J. (1978). Selenium metabolism in the marine phytoplanktersTetraselmis tetrathele andDunaliella minuta. Mar. Biol. 49: 231–236

    Google Scholar 

  • Wrench, J. J. (1979). Uptake and metabolism of selenium by oysters. Mar. Sci. Communs 5: 47–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, M., Bjerregaard, P. Interactive accumulation of mercury and selenium in the sea starAsterias rubens . Mar. Biol. 108, 269–276 (1991). https://doi.org/10.1007/BF01344342

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344342

Keywords

Navigation