Advertisement

Mathematische Annalen

, Volume 215, Issue 3, pp 251–268 | Cite as

Rationality of moduli spaces of stable bundles

  • P. E. Newstead
Article

Keywords

Modulus Space Stable Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M. F.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc.85, 181–207 (1957)Google Scholar
  2. 2.
    Grothendieck, A.: A general theory of fibre spaces with structure sheaf. Univ. of Kansas Report No. 4, 1955Google Scholar
  3. 3.
    Grothendieck, A.: Sur quelques points d'algèbre homologique. Tôhoku Math. J.9, 119–221 (1957)Google Scholar
  4. 4.
    Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. III (Seconde Partie). Inst. Hautes Études Sci. Publ. Math.17 (1963)Google Scholar
  5. 5.
    Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures I, II. Ann. of Math.67, 328–466 (1958)Google Scholar
  6. 6.
    Narasimhan, M. S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. of Math.89, 14–51 (1969)Google Scholar
  7. 7.
    Narasimhan, M. S., Ramanan, S.: Some applications of Hecke correspondences (preprint)Google Scholar
  8. 8.
    Narasimhan, M. S., Seshadri, C. S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math.82, 540–567 (1965)Google Scholar
  9. 9.
    Ramanan, S.: The moduli spaces of vector bundles over an algebraic curve. Math. Ann.200, 69–84 (1973)Google Scholar
  10. 10.
    Seshadri, C. S.: Mumford's conjecture for GL (2) and applications. In: Algebraic geometry (papers presented at the Bombay Colloquium 1968), 347–371. O.U.P. 1969Google Scholar
  11. 11.
    Seshadri, C. S.: Moduli of π-vector bundles over an algebraic curve. In: Questions on algebraic varieties (Centro Internazionale Matematico Estivo, III Ciclo, Varenna 1969), 141–260. Rome: Edizioni Cremonese, 1970Google Scholar
  12. 12.
    Seshadri, C. S.: Quotient spaces modulo reductive algebraic groups and applications to moduli of vector bundles on algebraic curves. Actes, Congrès intern. math. 1970, Tome 1, 479–482Google Scholar
  13. 13.
    Seshadri, C. S.: Quotient spaces modulo reductive algebraic groups. Ann. of Math.95, 511–556 (1972)Google Scholar
  14. 14.
    Tjurin, A. N.: On the classification of two-dimensional vector bundles over an algebraic curve of arbitrary genus. Izv. Akad. Nauk SSSR Ser. Mat.28, 21–52 (1964)Google Scholar
  15. 15.
    Tjurin, A. N.: Classification of vector bundles over an algebraic curve of arbitrary genus. Izv. Akad. Nauk SSSR Ser. Mat.29, 657–688 (1965). English translation, Amer. Math. Soc. Transl.63, 245–279 (1967)Google Scholar
  16. 16.
    Tjurin, A. N.: Classification ofn-dimensional vector bundles over an algebraic curve of arbitrary genus. Izv. Akad. Nauk SSSR Ser. Mat.30, 1353–1366 (1966). English Translation, Amer. Math. Soc. Transl.73, 196–211 (1968)Google Scholar
  17. 17.
    Tjurin, A. N.: Analogues of Torelli's theorem for multi-dimensional vector bundles over an algebraic curve. Izv. Akad. Nauk SSSR Ser. Mat.34, 338–365 (1970). English translation, Math. USSR-Izv.4, 343–370 (1970)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • P. E. Newstead
    • 1
  1. 1.Department of Pure MathematicsThe UniversityLiverpoolUK

Personalised recommendations