Advertisement

Mathematische Annalen

, Volume 215, Issue 3, pp 235–250 | Cite as

The Burnside ring of a compact Lie group. I

  • Tammo tom Dieck
Article

Keywords

Burnside Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, J. C., Gottlieb, D. H.: Applications of the evaluation map and transfer map theorems. Mimeographed notesGoogle Scholar
  2. 2.
    Borel, A.: Cohomologie des espaces localement compact d'après J. Leray. Lecture notes in Math. 2. Berlin-Heidelberg-New York: Springer 1964Google Scholar
  3. 3.
    Borel, A.: Remarks on the spectral sequence of a map. In: Seminar on transformation groups. Princeton: Princeton University Press 1960Google Scholar
  4. 4.
    Bourbaki, N.: Algèbre commutative, Chapitre 2. Paris: Hermann 1961Google Scholar
  5. 5.
    Bredon, G. E.: Introduction to compact transformation groups. New York: Academic Press 1972Google Scholar
  6. 6.
    Conner, P. E., Floyd, E. E.: Differentiable periodic maps. Berlin-Heidelberg-New York: Springer 1964Google Scholar
  7. 7.
    Conner, P. E., Floyd, E. E.: Maps of odd period. Annals of Math.84, 132–156 (1966)Google Scholar
  8. 8.
    tom Dieck, T.: Faserbündel mit Gruppenoperation. Arch. Math.20, 136–143 (1969)Google Scholar
  9. 9.
    Dieudonné, J.: Éléments d'analyse 4. Paris: Gauthier-Villars 1971Google Scholar
  10. 10.
    Dold, A.: Lectures on Algebraic Topology. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  11. 11.
    Dress, A.: Contributions to the theory of induced representations. In: AlgebraicK-theory II. Lectures Notes in Math.342, 183–240, Berlin-Heidelberg-New York: Springer 1973Google Scholar
  12. 12.
    Dress, A.: Operations in representation rings. Proceedings of Symposia in pure Mathematics,XXI, 39–45 (1971)Google Scholar
  13. 13.
    Ehresmann, C.: Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles 29–55, 1950Google Scholar
  14. 14.
    Green, J. A.: Axiomatic representation theory for finite groups. J. of pure and applied Algebra1, 41–77 (1971)Google Scholar
  15. 15.
    Illman, S.: Equivariant singular homology and cohomology for actions of compact Lie groups. In: Proc. Second Conf. Comp. Transf. Groups, Part I. Lecture Notes in Math.298, 403–415. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  16. 16.
    Jaworowski, J.: Private communicationGoogle Scholar
  17. 17.
    Palais, R.: The classification of G-spaces. Memoirs of the Amer. Math. Soc.36 (1960)Google Scholar
  18. 18.
    Segal, G.: The representation ring of a compact Lie group. Publ. math. I.H.E.S.34, 113–128 (1968)Google Scholar
  19. 19.
    Spanier, E. H.: Algebraic topology. New York: McGraw-Hill 1966Google Scholar
  20. 20.
    Wassermann, A. G.: Equivariant differential topology. Topology8, 127–150 (1969)Google Scholar
  21. 21.
    Yang, C. T.: The triangulability of the orbit space of a differentiable transformation group. Bull. Amer. Math. Soc.69, 405–408 (1963)Google Scholar
  22. 22.
    Zagier, D.: Equivariant Pontrjagin classes and applications to orbit spaces. Lecture notes in Math.290. Berlin-Heidelberg-New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Tammo tom Dieck
    • 1
  1. 1.Mathematisches Institut der UniversitätGöttingenFederal Republic of Germany

Personalised recommendations