Advertisement

Mathematische Annalen

, Volume 126, Issue 1, pp 253–262 | Cite as

On some approximate methods concerning the operatorsT* T

  • Tosio Kato
Article

Keywords

Approximate Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Courant, R., undHilbert, D.: Methoden der Mathematischen Physik, I, 2. Aufl., Berlin 1931, pp. 199–209.Google Scholar
  2. [2]
    Diaz, J. B., andGreenberg, H. J.: Upper and lower bounds for the solution of the first biharmonic boundary value problem, J. Math. Phys.27, 193–201 (1948).Google Scholar
  3. [3]
    Friedrichs, K.: Ein Verfahren der Variationsrechnung, Göttinger Nachr. 1929, 13–20.Google Scholar
  4. [4]
    Friedrichs, K.: On differential operators in Hilbert spaces, Amer. J. Math.61. 523–544 (1939).Google Scholar
  5. [5]
    Greenberg, H. J.: The determination of upper and lower bounds for the solution of the Dirichlet problem, J. Math. Phys.27, 161–182 (1948).Google Scholar
  6. [6]
    Kato, T.: On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan4, 334–339 (1949).Google Scholar
  7. [7]
    Kato, T.: Perturbation theory of semi-bounded operators, Math. Ann.125, 435–447 (1953).Google Scholar
  8. [8]
    Murray, F. J.: Linear transformations between Hilbert spaces and the application of this theory to linear partial differential equations, Trans. Amer. Math. Soc.37, 301–338 (1935).Google Scholar
  9. [9]
    Neumann, J. von: Über adjungierte Funktionaloperatoren, Ann. of Math.33, 294–310 (1932).Google Scholar
  10. [10]
    Rayleigh, Lord: On the theory of resonance, Phil. Trans.161, 77–118 (1870); Scientific Papers, Vol. I, pp. 33–75; Theory of Sound, Vol. II, §§ 305–308.Google Scholar
  11. [11]
    Trefftz, E.: Konvergenz und Fehlerschätzung beimRitzschen Verfahren, Math. Ann.100, 503–521 (1928).Google Scholar
  12. [12]
    Weyl, H.: The method of orthogonal projection in potential theory, Duke Math. J.7, 411–444 (1940).Google Scholar

Copyright information

© Springer-Verlag 1953

Authors and Affiliations

  • Tosio Kato
    • 1
  1. 1.Tokyo

Personalised recommendations