Advertisement

manuscripta mathematica

, Volume 5, Issue 2, pp 155–163 | Cite as

Über den Index der Lösungen Linearer Differentialgieichungen

  • Günter Frank
  • Erwin Mues
Article

Abstract

In an earliner paper the authors proved the follwoing inequalities for the index (I(r,f) of an entire function f
$$\max (0,\lambda - 1) \leqslant \mathop {\lim }\limits_{r \to \infty } \sup \frac{{l\mathop o\limits^ + g I(r,f)}}{{\log r}} \leqslant \lambda $$
, where λ is the order of f. It is known that the upper bound is sharp. In this paper the authors prove that the lower bound cannot be sharpened if λ≥1 is a rational number. In this direction it is shown that for certain solutions of linear differential equations
$$w^{(n)} + a_{n - 1} w^{(n - 1)} + \ldots + a_o w = 0$$
with polynomial coefficients aj in the left side of the above inequality “≤” and “lim sup” are replaced by “=” and “lim”. Also it is proved that the differential equation has constant coefficients if and only if every solution is of bounded index.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Litertur

  1. [1]
    BOAS, R.P.: Entire functions. New York: Academic Press 1954.Google Scholar
  2. [2]
    FRANK, G: Picardsche Ausnahmewerte bei Lösungen linearer Differentialgleichungen. Dissertation an der Universität Karlsruhe (TH), 1969.Google Scholar
  3. [3]
    FRANK, G.: Über den Index einer ganzen Funktion. (Erscheint im Arch. der Math.)Google Scholar
  4. [4]
    FRANK, G., MUES, E.: Über dasWachstum des Index ganzer Funktionen. (Zum Druck eingereitch.)Google Scholar
  5. [5]
    LEPSON, B.: Differential equations of infinite order. Hyperdirichlet series and eintire functions of bounded indes. Entire functions and related parts of analysis. (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Providence, R.I.: Amer. Math. Soc. 1968.Google Scholar
  6. [6]
    PÖSCHL, K.: Über anwachsen und Nullstellenverteilung der ganzen transzendenten Lösungen linearer Differentialgleichungen. I. J. reine und angew. Math. 199, 121–138 (1958).Google Scholar
  7. [7]
    WITTICH, H.. Neuere Untersuchungen über eindeutige analytische Funktionen. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  8. [8]
    WITTICH, H.: Zur Theorie linearer Differentialgleichungen im Komplexen. Ann. Acad. Sci. Fenn. Ser. AI, Nr. 379 (1966).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Günter Frank
    • 1
  • Erwin Mues
    • 1
  1. 1.Mathematisches Institut I der UniversitätKarlsruhe

Personalised recommendations