Skip to main content
Log in

Universelle Approximation durch Riesz-Transformierte der geometrischen Reihe

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let p={pv} be a fixed sequence of complex numbers. Define\(p_n : = \mathop \Sigma \limits_{\nu = o}^n p_\nu \) and suppose that\(p_{m_k } \ne o\) for a subsequence M={mk} of nonnegative integers. The matrix A=(αkv) with the elements

$$\alpha _{k\nu } = p_\nu /p_{m_k } if o \leqslant \nu \leqslant m_k ,\alpha _{k\nu } = oif \nu > m_k $$

generates a summability method (R,p,M) which is a refinement of the well known Riesz methods. The (R,p,M) methods have been introduced in [4].

In the present paper we are concerned with the summability of the geometric series\(\mathop \Sigma \limits_{\nu = o}^n z^\nu \) by (R,p,M) methods. We prove the following theorem. Suppose G is a simply connected domain with\(\{ z:|z|< 1\} \subset G,1 \varepsilon | G \). Then there exists a universal, regular (R,p,M) method having the following properties: (1)\(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is compactly summable (R,p,M) to\(\tfrac{1}{{1 - z}}\) on G. (2) For every compact set B⊂¯Gc which has a connected complement and for every function f which is continuous on B and analytic in its interior there exists a subsequence M(B,f) of M such that\(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is uniformly summable (R,p,M(B,f)) to f(z) on B. (3) For every open set U⊂Gc which has simply connected components in ℂ and for every function f which is analytic on U there exists a subsequence M(U,f) of M such that\(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is compactly summable (R,p,M(U,f)) to f(z) on U.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literaturverzeichnis

  1. ALEXITS, G.: Konvergenzprobleme der Orthogonalreihen. VEB Deutscher Verlag der Wissenschaften, Berlin 1960

    MATH  Google Scholar 

  2. BIRKHOFF, G.D.: Démonstration d'un théorème élémentaire sur les fonctions entières. C.R. Acad. Sci. Paris189 (1929), 473–475

    MATH  Google Scholar 

  3. CHUI, C.K. und PARNES, M.N.: Approximation by over-convergence of a power series. J. Math. Anal. Appl.36 (1971), 693–696

    Article  MathSciNet  MATH  Google Scholar 

  4. FAULSTICH, K.: Summierbarkeit von Potenzreihen durch Riesz-Verfahren mit komplexen Erzeugendenfolgen. Mitt. Math. Sem. Gießen, Heft139, (1979)

  5. HEINS, M.: A universal Blaschke product. Arch. Math.6 (1955), 41–44

    Article  MathSciNet  MATH  Google Scholar 

  6. LORENTZ, G.G.: Bernstein polynomials. In: Mathematical Expositions, no. 8, University of Toronto Press, Toronto, 1953

    Google Scholar 

  7. LUH, W.: Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrix-Transformierten. Mitt. Math. Sem. Gießen, Heft88 (1970)

  8. LUH, W.: Über den Satz von Mergelyan. J. Approximation Theory16, No. 2 (1976), 194–198

    Article  MathSciNet  MATH  Google Scholar 

  9. LUH, W.: Über die Summierbarkeit der geometrischen Reihe. Mitt. Math. Sem. Gießen, Heft113 (1974)

  10. LUH, W.: Über cluster sets analytischer Funktionen. Acta Math. Acad. Sei. Hung.33 (1–2), (1978), 137–142

    MathSciNet  MATH  Google Scholar 

  11. LUH, W.: und TRAUTNER, R.: Summiertaarkeit der geometrischen Reihe auf vorgeschriebenen Mengen. Manuscripta Math.18 (1976), 317–326

    Article  MathSciNet  MATH  Google Scholar 

  12. MARCINKIEWICZ, J.: Quelques théorèmes sur les séries orthogonales. Ann. Soc. Polon. Math.16 (1938), 84–96

    MATH  Google Scholar 

  13. MENCHOFF, D.: Über die Partialsummen der trigonometrischen Reihen (Russian). Mat. Sb.20 (62), (1947), 197–238

    MathSciNet  Google Scholar 

  14. MERGELYAN, S.N.: Uniform approximations of functions of a complex variable (Russian). Uspehi Mat. Nauk. (N.S.)7, no. 2 (48), (1952), 31–122

    MathSciNet  MATH  Google Scholar 

  15. PAL, J.: Zwei kleine Bemerkungen. Tôhoku Math. J.6 (1914/15), 42–43

    Google Scholar 

  16. RUDIN, W.: Real und complex analysis. McGraw-Hill. New York-Toronto-London, 1966

    MATH  Google Scholar 

  17. SEIDEL, W. und WALSH, J.L.: On approximation by euclidean and noneuclidean translations of analytic functions. Bull. Amer. Math. Soc.47 (1941), 916–920

    Article  MathSciNet  MATH  Google Scholar 

  18. SMIRNOV, V.I. und LEBEDEV, N.A.: Functions of a complex variable: Constructive theory. In: The M.I.T. Press. Cambridge, Mass. 1968

    MATH  Google Scholar 

  19. TALALYAN, A.A.: Über die Konvergenz fast überall von Teilfolgen der Partialsummen allgemeiner Orthogonalreihen (Russian). Akad. Nauk. Armjan. SSR Dokl.10 (1957), 17–34

    MathSciNet  MATH  Google Scholar 

  20. TOMM, L.: Über die Summierbarkeit der geometrischen Reihe mit regulären Verfahren. Dissertation, Ulm 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulstich, K., Luh, W. & Tomm, L. Universelle Approximation durch Riesz-Transformierte der geometrischen Reihe. Manuscripta Math 36, 309–321 (1981). https://doi.org/10.1007/BF01322495

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322495

Navigation