Advertisement

Amino Acids

, Volume 16, Issue 2, pp 133–147 | Cite as

Kainic acid (KA)-induced seizures in Sprague-Dawley rats and the effect of dietary taurine (TAU) supplementation or deficiency

  • B. Eppler
  • T. A. Patterson
  • W. Zhou
  • W. J. Millard
  • R. DawsonJr.
Full Papers

Summary

Male Sprague-Dawley rats received TAU supplementation (1.5% in drinking water) or TAU deficient diets for 4 weeks to test for a possible neuroprotective role of TAU in KA-induced (10 mg/kg s.c.) seizures. TAU supplementation significantly increased serum and hippocampal TAU levels, but not TAU content in temporal cortex or striatum. TAU deficient diets did not attenuate serum or tissue TAU levels. Dietary TAU supplementation failed to decrease the number or latency of partial or clonic-tonic seizures or wet dog shakes, whereas a TAU deficient diet decreased the number of clonictonic and partial seizures. This study does not support previous observations of an anticonvulsant effect of TAU against KA-induced seizures. KAtreatment decreasedα2-adrenergic receptor binding sites and TAU content in the temporal cortex across all dietary treatment groups, supporting previous evidence of severe KA-induced damage and neuronal loss in this brain region.

Keywords

Amino acids Taurine Kainic acid Epilepsy Anticonvulsants Neuroprotection Excitatory amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagley P, Hirschberger LL, Stipanuk MH (1995) Evaluation and modification of an assay procedure for cysteine dioxygenase activity: high-performance liquid chromatography method for measurement of cysteine sulfinate and demonstration of physiological relevance of cysteine dioxygenase activity in cysteine metabolism. Analyt Biochem 227: 40–48Google Scholar
  2. Baran H, Sperk G, Hörtnagel H, Sapetsching G, Hornykiewicz O (1985)α 2 Adrenoceptors modulate kainic acid-induced limbic seizures. Eur J Pharmacol 113: 263–269Google Scholar
  3. Baran H, Lassmann H, Sperk G, Seitelbeger F, Hornykiewicz O (1987) Effect of mannitol treatment on brain neurotransmitter markers in kainic acid-induced epilepsy. Neuroscience 21/3: 679–684Google Scholar
  4. Barbeau A, Inoue N, Tsukada Y, Butterworth RF (1975) The neuropharmacology of taurine. Life Sci 17: 669–678Google Scholar
  5. Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic-acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14/2: 375–403Google Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254Google Scholar
  7. Davison AN, Kaczmarek LK (1971) Taurine- a possible neurotransmitter. Nature 234: 107–108Google Scholar
  8. Dawson Jr R, Wallace DR (1989) Central and peripheral actions ofα 2-adrenergic agonists on renal function in Long-Evans and Brattleboro rats. Pharmacology 39: 240–252Google Scholar
  9. Dawson Jr R, Wallace DR (1992a) Taurine content in tissues from aged Fischer 344 rats. Age 15: 73–81Google Scholar
  10. Dawson Jr R, Wallace DR (1992b) Kainic acid-induced seizures in aged rats: neurochemical correlates. Brain Res Bull 29: 459–468Google Scholar
  11. Dawson Jr R, Eppler B, Patterson TA, Shih D, Liu S (1996) The effect of taurine in a rodent model of aging. In: Huxtable RJ et al (eds) Taurine 2. Plenum Press, New York, pp 37–50Google Scholar
  12. Dixon WJ, Massey FJ (1969) Introduction to statistical analysis. McGraw-Hill, New YorkGoogle Scholar
  13. Durelli L, Mutani R, Quattrocolo G, Delsedime M, Buffa C, Fassio F, Valentini C, Fumero S (1977) Relationships between electroencephalographic pattern and biochemical picture of the cobalt epileptogenic lesion after cortical superfusion with taurine. Exp Neurol 54: 489–503Google Scholar
  14. Durelli L, Mutani R, Delsedime M, Quattrocolo G, Buffa C, Mazzarino M, Fumero S (1979) Electroencephalographic and biochemical study of the antiepileptic actions of taurine administered by cortical superfusion. Exp Neurol 52: 30–39Google Scholar
  15. Eppler B, Dawson Jr R (1998) The effects of aging on taurine content and biosynthesis in different strains of rats. In: Huxtable RJ et al (eds) Taurine 3. Plenum Press, New York, pp 55–61Google Scholar
  16. Fariello RG, Golden GT, Pisa M (1982) Homotaurine (3 aminopropanesulfonic acid; 3APS) protects from the convulsant and cytotoxic effect of systematically administered kainic acid. Neurology 32: 241–245Google Scholar
  17. Gaull GE (1989) Taurine in pediatric nutrition: review and update. Pediatrics 83/3: 433–442Google Scholar
  18. Green P, Dawson Jr R, Wallace D, Owens J (1998) Treatment of rat brain membranes with taurine increases radioligand binding. In: Huxtable RJ et al (eds) Taurine 3. Plenum Press, New York, pp 377–383Google Scholar
  19. Han X, Budreau AM, Chesney RW (1997) Functional expression of rat renal cortex taurine transporter in Xenopus leavis oocytes: adaptive regulation by dietary manipulation. Pediatr Res 41/5: 624–631Google Scholar
  20. Hope DB (1957) The persistence of taurine in the brain of pyridoxine-deficient rats. J Neurochem 1: 364–369Google Scholar
  21. Huxtable RJ (1989) Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol 32: 471–533Google Scholar
  22. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72/2: 101–163Google Scholar
  23. Izumi K, Igisu H, Fukuda T (1974) Suppression of seizures by taurine-specific or nonspecific? Brain Res 76: 171–173Google Scholar
  24. Izumi K, Igisu H, Fukuda T (1975) Effects of edetate on seizure suppressing actions of taurine and GABA. Brain Res 88: 576–579Google Scholar
  25. Jacobsen JG, Smith LH Jr (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48/2: 424–511Google Scholar
  26. Killian M, Frey HH (1973) Central monoamines and convulsive thresholds in mice and rats. Neuropharmacol 12: 681–692Google Scholar
  27. Kontur P, Dawson JR R, Monjan AA (1984) Manipulation of mobile phase parameters for HPLC separation of endogenous monoamines in rat brain tissue. J Neurosci Methods 11: 5–18Google Scholar
  28. Lehman A (1987) Pentylenetetrazol seizure threshold and extracellular levels of cortical amino acids in taurine-deficient kittens. Act Physiol Scand 131: 453–458Google Scholar
  29. Lombardini JB (1992) Review: Recent studies on taurine in the central nervous system. In: Lombardini JB (ed) Taurine. Plenum Press, New York, pp 245–251Google Scholar
  30. Malcangio M, Bartolini A, Ghelardini C, Bennardini F, Malmberg-Aiello P, Franconi F, Giotto A (1989) Effects of ICV taurine on the impairment of learning, convulsions and death caused by hypoxia. Psychopharmacology 98: 316–320Google Scholar
  31. McGeer PL, McGeer EG (1982) Kainic acid: the neurotoxic breakthrough. Crit Rev Toxicol 10/1: 1–26Google Scholar
  32. Menendez N, Herreras O, Solis JM, Herranz AS, Del Rio RM (1989) Extracellular taurine increase in rat hippocampus evoked by specific glutamate receptor activation is related to the excitatory potency of glutamate agonists. Neurosci Lett 102: 64–69Google Scholar
  33. Mutani R, Bergamini L, Fariello R, Delsedime M (1974) Effects of taurine on cortical acute epileptic foci. Brain Res 70: 170–173Google Scholar
  34. Nadler JV (1981) Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 29: 2031–2042Google Scholar
  35. Nelson MF, Zazcek R, Coyle JT (1980) Effects of sustained seizures produced by intrahippocampal injection of kainic acid on noradrenergic neurons: evidence for local control of norepinephrine release. J Pharmacol Exp Ther 214: 694–702Google Scholar
  36. Nyffenegger E, Lauber K, Aebi H (1960) Die Taurineausscheidung normaler und B6- avitaminotischer Ratten nach Ganzkörperbestrahlung. Biochem Zeitschr 333: 226–235Google Scholar
  37. Oja SS, Kontro P (1983) Taurine. In: Lajtha A (ed) Handbook of neurochemistry, vol 3. Plenum, New York, pp 501–533Google Scholar
  38. Olney JW, Rhee V, Lan Ho O (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77: 507–512Google Scholar
  39. Palkovits M, Banay-Schwartz M, Lajtha A (1990) Taurine levels in brain nuclei of young adult and aging rats. In: Taurine: functional neurochemistry, physiology, and cardiology. Wiley-Liss, Inc. New York, pp 45–51Google Scholar
  40. Sanberg PR, Staines W, McGeer EG (1979) Chronic taurine effects on various neurochemical indices in control and kainic acid-lesioned neostriatum. Brain Res 161: 376–370Google Scholar
  41. Schwob JE, Fuller T, Price JL, Olney JW (1980) Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience 5: 991–1014Google Scholar
  42. Sperk G, Lassmann H, Baran H, Seitelberger F, Hornykiewicz O (1985) Kainic acidinduced seizures: dose-relationship of behavioural, neurochemical and histopathological changes. Brain Res 338: 289–295Google Scholar
  43. Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42: 1–32Google Scholar
  44. Stafstrom CE, Thompson JL, Holmes GL (1992) Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res 65: 227–236Google Scholar
  45. Tang XW, Deupree DL, Liu L, Wu JY (1996) Effect of GABA, taurine and chloridechannel blockers on excitatory amino acid-induced neurotoxicity. J Neurochem 66 [Suppl]1: S80Google Scholar
  46. Uemura S, Ienaga K, Higashiura K, Kimura H (1991) Effects of intraamygdaloid injection of taurine and valyltaurine on amygdaloid kindled seizure in rats. Jpn J Psychiatry Neurol 45/2: 383–385Google Scholar
  47. Van Gelder NM, Sherwin AL, Sacks C, Andermann F (1975) Biochemical observations following administration of taurine to patients with epilepsy. Brain Res 94: 297–306Google Scholar
  48. Van Gelder NM (1978) Taurine, the compartmentalized metabolism of glutamic acid, and the epilepsies. Can J Physiol Pharmacol 56: 362–374Google Scholar
  49. Velísek L, Kubová H, Velísková J, Mares P, Ortová M (1992) Action of antiepileptic drugs against kainic acid-induced seizures and automatisms during ontogenesis in rats. Epilepsia 33/6: 987–993Google Scholar
  50. Wada JA, Osawa T, Wake A, Corcoran ME (1975) Effects of taurine on kindled amygdaloid seizures in rats, cats, and photosensitive baboons. Epilepsia 16: 229–234Google Scholar
  51. Wade JV, Samson FE, Nelson SR, Pazdernik TL (1987) Changes in extracellular amino acids during soman- and kainic acid-induced seizures. J Neurochem 49/2: 645–649Google Scholar
  52. Wozniak DF, Steward GR, Miller JP, Olney JW (1991) Age-related sensitivity to kainate neurotoxicity. Exp Neurol 114: 250–253Google Scholar
  53. Yoshida M, Izumi K, Koja T, Fukuda T, Munekata E, Nakanishi T (1986) Inhibitory effect of taurine on wet-dog shakes produced by [D-ALA2, MET5]enkephalinamide with reference to effects on hippocampal epileptic discharges. Neuropharmacology 25/12: 1373–1378Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • B. Eppler
    • 1
  • T. A. Patterson
    • 2
  • W. Zhou
    • 1
  • W. J. Millard
    • 1
  • R. DawsonJr.
    • 1
  1. 1.Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleUSA
  2. 2.Division of NeurotoxicologyNational Center for Toxicological Research/FDAJeffersonUSA

Personalised recommendations