Skip to main content
Log in

The ties that bind: Inter-clonal cooperation may help a fragile coral dominate shallow high-energy reefs

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In Belize, shallow fore-reef buttresses are dominated byAgaricia tenuifolia Dana. The ecological importance of this fragile coral in such a high-energy environment may be explained in part by an unusual cooperative interaction between adjacent clones ofA. tenuifolia. The shallow buttresses are often composed primarily of many clones ofA. tenuifolia growing in close proximity. Surveys conducted at Carrie Bow Cay, Belize, in 1986 and 1987 showed that intraspecific contacts between different clones are common and occur far more frequently than interspecific encounters with other sessile taxa. In contrast to many other corals, contacts between non-clonemates ofA. tenuifolia do not result in competitive interactions, tissue bleaching or death, or significantly altered patterns of colony growth. Instead, inter-clonal contact stimulates localized morphological changes in the skeletons of both corals directly beneath the contact interface, which tend to anchor the two corals against each other, making them more resistant to breakage and detachment. By mechanically stabilizing clusters of otherwise fragile corals, these cooperative interactions potentially enhance the long-term survivorship and hence the fitness of interactingA. tenuifolia clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bak, R. P. M., Criens, S. R. (1982). Experimental fusion in AtlanticAcropora (Scleractinia). Mar. Biol. Lett. 3: 67–72

    Google Scholar 

  • Cairns, S. D. (1982). Stony corals (Cnidaria: Hydrozoa, Scleractinia) of Carrie Bow Cay, Belize. Smithson. Contr. mar. Sci. 12: 271–302

    Google Scholar 

  • Chamberlain, J. A., Graus, R. R. (1975). Water flow and hydromechanical adaptations of branched reef corals. Bull. mar. Sci. 25: 112–125

    Google Scholar 

  • Chornesky, E. A. (1983). Induced development of sweeper tentacles on the reef coralAgaricia agaricites: a response to direct competition. Biol. Bull. mar. biol. Lab., Woods Hole 165: 569–581

    Google Scholar 

  • Chornesky, E. A. (1984). The consequences of direct competition between scleractinian reef corals: development and use of sweeper tentacles. Ph.D. thesis, University of Texas at Austin, Texas

    Google Scholar 

  • Chornesky, E. A. (1989). Repeated reversals during spatial competition between corals. Ecology 70: 843–855

    Google Scholar 

  • Collins, J. D. (1978). A study of the interactive biology of corals. Masters thesis, The James Cook Univ. of North Queensland

  • Gilmore, M. D., Hall, B. R. (1976). Life history, growth habits, and constructional roles ofAcropora cervicornis in the patch reef environment. J. Sed. Pet. 46: 519–522

    Google Scholar 

  • Goreau, T. F. (1959). The ecology of Jamaican coral reefs 1. Species composition and zonation. Ecology 40: 67–90

    Google Scholar 

  • Heyward, A. J., Stoddart, J. A. (1985). Genetic structure of two species ofMontipora on a patch reef: conflicting results from electrophoresis and histocompatibility. Mar. Biol. 85: 117–121

    Google Scholar 

  • Hidaka, M. (1985a). Nematocyst discharge, histoincompatibility, and the formation of sweeper tentacles in the coralGalaxea fascicularis. Biol. Bull. 168: 350–358

    Google Scholar 

  • Hidaka, M. (1985b). Tissue compatibility between colonies and between newly settled larvae ofPocillopora damicornis. Coral Reefs 4: 111–116

    Google Scholar 

  • Hidaka, M., Yamazato, K. (1984). Intraspecific interactions in a scleractinian coral,Galaxea fascicularis: induced formation of sweeper tentacles. Coral Reefs 3: 77–85

    Google Scholar 

  • Hildemann, W. H., Jokiel, P. L., Bigger, C. H., Johnston, I. S. (1980). Allogenic polymorphism and alloimmune memory in the coral,Montipora verrucosa. Transplantation 30: 297–301

    Google Scholar 

  • Hildemann, W. H., Linthicum, D. S., Vann, D. C. (1975). Transplantation and immunoincompatibility reactions among reefbuilding corals. Immunogenetics 2: 269–284

    Google Scholar 

  • Hildemann, W. H., Raison, R. L., Hull, C. J., Akaka, L., Okumoto, J., Cheung, G. (1977). Tissue transplantation immunity in corals. Proc. 3rd int. coral Reef Symp. 537–543 [Taylor, D. L. (ed.) Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami]

    Google Scholar 

  • Hunter, C. L. (1985). Assessment of clonal diversity and population structure ofPorites compressa (Cnidaria, Scleractinia). Proc. 5th int. coral Reef Congr. 6: 69–74 [Gabrié, C. et al. (eds.) Antenne Museum — EPHE, Moorea, French Polynesia]

    Google Scholar 

  • Hunter, C. L., Kehoe, C. C. (1986). Patchwork patchreefs: the clonal diversity of the coralPorites compressa in Kaneohe Bay, Hawaii. In: Jokiel, P. L., Richmond, R. H., Rogers, R. A. (eds.) Coral reef population biology. Hawaii Inst. of Mar. Biol. Tech. Rep. 37, Sea Grant Coop. Rep. UNIHI-SEAGRANT-CR-86-01, p. 124–132

  • Jokiel, P. L. (1978). Effects of water motion on reef corals. J. exp. mar. Biol. Ecol. 35: 87–97

    Google Scholar 

  • Jokiel, P. L., Hildemann, W. H., Bigger, C. H. (1983). Clonal population structure of two sympatric species of the reef coralMontipora. Bull. mar. Sci. 33: 181–187

    Google Scholar 

  • Lang, J. C. (1971). Interspecific aggression by scleractinian corals. 1. The rediscovery ofScolymia cubensis (Milne Edwards & Haime). Bull. mar. Sci. 21: 952–959

    Google Scholar 

  • Lang, J. C. (1973). Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull. mar. Sci. 23: 260–279

    Google Scholar 

  • Lang, J. C., Chornesky, E. A. (1990). Competition between scleractinian reef corals: a review of mechanisms and effects. In: Dubinsky, Z. (ed.) Ecosystems of the world: coral reefs. Elsevier Press, Amsterdam

    Google Scholar 

  • Logan, A. (1985). Intraspecific immunological responses in five species of corals from Bermuda. Proc. 5th int. coral Reef Congr. 6: 63–67 [Gabrié, C. et al. (eds.) Antenne Museum — EPHE, Moorea, French Polynesia]

    Google Scholar 

  • Neigel, J. E., Avise, J. C. (1983). Clonal diversity and population structure in a reef-building coral,Acropora cervicornis: selfrecognition analysis and demographic interpretation. Evolution, Lawrence, Kansas 37: 437–453

    Google Scholar 

  • Potts, D. C. (1976). Growth interactions among morphological variants of the coralAcropora palifera. In: Mackie, G. O. (ed.) Coelenterate ecology and behavior. Plenum Press, New York, p. 79–88

    Google Scholar 

  • Resing, J. M., Ayre, D. J. (1985). The usefulness of the tissue grafting bioassay as an indicator of clonal identity in scleractinian corals (Great Barrier Reef Australia). Proc. 5th int. coral Reef, Congr. 6: 75–81 [Gabrié, C. et al. (eds.) Antenne Museum — EPHE, Moorea, French Polynesia]

    Google Scholar 

  • Rinkevich, B., Loya Y (1983a). Intraspecific competitive networks in the Red Sea coralStylophora pistillata. Coral Reefs 1: 161–172

    Google Scholar 

  • Rinkevich, B., Loya, Y (1983b). Oriented translocation of energy in grafted reef corals. Coral Reefs 1: 243–247

    Google Scholar 

  • Rinkevich, B., Loya, Y. (1985). Intraspecific competition in a reef coral: effects on growth and reproduction. Oecologia 66: 100–105

    Google Scholar 

  • Rinkevich, B., Weissman, I. L. (1987). Chimeras in colonial invertebrates: a synergistic symbiosis or somatic- and germ-cell parasitism. Symbioses 4: 117–134

    Google Scholar 

  • Rützler K., Macintyre, I. G. (1982). The habitat distribution and community structure of the barrier reef complex at Carrie Bow Cay, Belize. Smithson. Contr. mar. Sci. 12: 9–45

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1969). Biometry. The principles and practice of statistics in biological research. W. H. Freeman & Co., San Francisco

    Google Scholar 

  • Stoddart, J. A., Ayre, D. J., Willis, B., Heyward, A. J. (1985). Selfrecognition in sponges and corals? Evolution, Lawrence, Kansas 39: 461–463

    Google Scholar 

  • Tunnicliffe, V. (1978). The role of boring sponges in coral fracture. In: Levi, C., Boury-Esnault, N. (eds.) Biologie des spongaires. Centre National de la Recherche Scientifique, Paris, p. 309–315

    Google Scholar 

  • Wainwright, S. A., Biggs, W. D., Currey, J. D., Gosline, J. M. (1976). Mechanical design in organisms. John Wiley & Sons, New York

    Google Scholar 

  • Wells, J. W. (1973). New and old scleractinian corals from Jamaica. Bull. mar. Sci. 23: 16–53

    Google Scholar 

  • Willis, B. L., Ayre, D. J. (1985). Asexual reproduction and genetic determination of growth form in the coralPavona cactus: biochemical genetic and immunogenic evidence. Oecologia 65: 516–525

    Google Scholar 

  • Wulff, J. L., Buss, L. W. (1979). Do sponges help hold coral reefs together? Nature, Lond. 281: 474–475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

The views expressed here are those of the author and do not necessarily reflect those of the Office of Technology Assessment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chornesky, E.A. The ties that bind: Inter-clonal cooperation may help a fragile coral dominate shallow high-energy reefs. Mar. Biol. 109, 41–51 (1991). https://doi.org/10.1007/BF01320230

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320230

Keywords

Navigation