Skip to main content
Log in

Increased macrophyte nitrate reductase activity as a consequence of groundwater input of nitrate through sandy beaches

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

While most marine macrophytes preferentially assimilate ammonium to meet growth demand for nitrogen, some also utilize nitrate and exhibit high nitrate reductase activity (NRA). Although nitrate concentrations are often low in coastal waters during the summer and sandy beaches are generally considered to be low nutrient-input habitats, we have observed elevated NRA in leaves of some eelgrass (Zostera marina L.) plants growing immediately adjacent to the shoreline. We postulated that nitrate may become available to eelgrass and macroalgae via groundwater inputs that enter the nearshore water column. To address this possibility, we investigated the availability of groundwater nitrate for the induction of NRA in the leaves of eelgrass and in the macroalgaeSargassum filipendula C. Agardh (Phaeophyceae) andEnteromorpha intestinalis L. Link (Chlorophyceae) collected adjacent to two sandy beaches in the vicinity of Woods Hole, Massachusetts, USA. Induction of NRA was determined in the laboratory for eelgrass collected from one of the beach sites and from an offshore site, Lackey's Bay, which is isolated from groundwater input. At the two beach locations, pore water nitrate concentrations were 100 to 400µM within a few meters inland from the waterline. Nitrate efflux into the nearshore water column was quite high and variable (2160±660µmol m−2 h−1) when associated with rapid percolation (37±11 1 m−2 h−1) of nitrate-enriched pore water. Turbulent wave mixing rapidly diluted the nitrate. Macroalgae and eelgrass growing adjacent to a beach with high nitrate efflux had NR activities three- to sevenfold higher than those of algae and eelgrass growing along a beach section with low nitrate efflux. NRA of eelgrass plants from Lackey's Bay and Great Harbor increased in response to low daily nitrate additions (10 to 25µM) in the laboratory, with higher nitrate additions (50 to 200µM) yielding less dramatic responses. The increase in NRA was roughly three times higher for Great Harbor than for Lackey's Bay eelgrass. It appears that groundwater input of nitrate is sufficient to induce NRA in marine macrophytes growing near some beaches, including those with turbulent wave mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Asmus, R. (1986). Nutrient flux in short-term enclosures of intertidal sand communities. Ophelia 26: 1–18

    Google Scholar 

  • Bokuniewicz, H. (1980). Groundwater seepage into Great South Bay, New York. Estuar. cstl mar. Sci. 10: 437–444

    Google Scholar 

  • Bolter, M., Meyer-Reil, L.-A., Dawson, R., Liebezeit, G., Wolter, K., Szwerinski, H. (1981). Structure analysis of shallow water ecosystems: interaction of microbiological, chemical and physical characteristics measured in the overlying waters of sandy beach sediments. Estuar. coast. Shelf. Sci. 13: 579–589

    Google Scholar 

  • Capone, D.G., Bautista, M.F. (1985). A groundwater source of nitrate in nearshore marine sediments. Nature, Lond. 313: 214–216

    Google Scholar 

  • Capone, D.G., Slater, J. M. (1988). Interannual patterns of water table height and groundwater derived nitrate in nearshore sediments. EOS 69: 1080

    Google Scholar 

  • Costa, J. E. (1988). Eelgrass (Zostera marina L.) in Buzzards Bay: Distribution, production, and historical changes in abundance. Ph. D. thesis, Boston University, Boston, Massachusetts

    Google Scholar 

  • Davison, I. R., Andrews, M., Stewart, W. D. P. (1984). Regulation of growth inLaminaria digitata: use of in-vivo nitrate reductase activities as an indicator of nitrogen limitation in field populations ofLaminaria spp. Mar. Biol. 84: 207–217

    Google Scholar 

  • Davison, I.R., Stewart, W. D. P. (1984). Studies on nitrate reductase activity inLaminaria digitata (Huds.) Lamour. I. Longitudinal and transverse profiles of nitrate reductase activity within the thallus. J. exp. mar. Biol. Ecol. 74: 201–210

    Google Scholar 

  • D'Elia, C.F., Webb, K. L., Porter, J. W. (1981). Nitrate-rich groundwater inputs to Discovery Bay, Jamaica: a significant source of N to local coral reefs? Bull. mar. Sci. 31: 903–910

    Google Scholar 

  • Fitzgerald, W. J., Jr (1978). Environmental parameters influencing the growth ofEnteromorpha clathrata (Roth) J. Ag. in the intertidal zone on Guam. Botanica mar. 21: 207–220

    Google Scholar 

  • Florek, R. J., Rowe, G. T. (1983). Oxygen consumption and dissolved inorganic nutrient production in marine coastal and shelf sediments of the Middle Atlantic Bight. Int. Rev ges. Hydrobiol. 68: 73–112

    Google Scholar 

  • Fonseca, M. S., Fisher, J. S., Zieman, J. C., Thayer, G. W. (1982). Influence of the seagrass,Zostera marina L., on current flow. Estuar. cstl Shelf Sci. 15: 351–364

    Google Scholar 

  • Giblin, A. E., Teal, J. M., Gaines, A. G. (1983). A nitrogen budget for Town cove. In: Teal, J. M. (ed.) The coastal impact of groundwater discharge: an assessment of anthropogenic nitrogen loading in Town Cove, Orleans, MA. Final report to the Town of Orleans, Woods Hole Oceanographic Institution, Woods Hole, p. 143–159

    Google Scholar 

  • Guerrero, M. G., Vega, J. M., Losada, M. (1981). The assimilatory nitrate-reducing system and its regulation. A. Rev. Pl. Physiol. 32: 169–204

    Google Scholar 

  • Iizumi, H., Hattori, A. (1982). Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat. Bot. 12: 245–256

    Google Scholar 

  • Johannes, R. E. (1980). The ecological significance of the submarine discharge of groundwater. Mar. Ecol. Prog. Ser. 3: 365–373

    Google Scholar 

  • Kaspar, H.F. (1983). Denitrification, nitrate reduction to ammonium, and inorganic nitrogen pools in intertidal sediments. Mar. Biol. 74: 133–139

    Google Scholar 

  • Kaspar, H. F., Asher, R. A., Boyer, I. C. (1985). Microbial nitrogen transformations in sediments and inorganic nitrogen fluxes across the sediment/water interface on the South Island west coast, New Zealand. Estuar. coast. Shelf Sci. 21: 245–255

    Google Scholar 

  • Kenworthy, J. W., Zieman, J.C., Thayer, G. W. (1982). Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA). Oecologia 54: 152–158

    Google Scholar 

  • Koop, K., Newell, R. C., Lucas, M. I. (1982). Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore. Mar. Ecol. Prog. Ser. 9: 91–96

    Google Scholar 

  • Lawrence, J. M., Herrick, H. E. (1982). Media for in vivo nitrate reductase assay of plant tissues. Pl. Sci. Lett. 24: 17–26

    Google Scholar 

  • Lee, V., Olsen, S. (1985). Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries 8: 191–202

    Google Scholar 

  • Lewis, J. B. (1987). Measurements of groundwater seepage flux onto a coral reef: spatial and temporal variations. Limnol. Oceanogr. 32: 1165–1169

    Google Scholar 

  • McLachlan, A. (1982). A model for the estimation of water filtration and nutrient regeneration by exposed sandy beaches. Mar. envir. Res. 6: 37–47

    Google Scholar 

  • McLachlan, A., McGwynne, L. (1986). Do sandy beaches accumulate nitrogen? Mar. Ecol. Prog. Ser. 34: 191–195

    Google Scholar 

  • Murthy, M. S., Rao, A. S., Reddy, E. R. (1986) Dynamics of nitrate reductase activity in two intertidal algae under desiccation. Botanica mar. 29: 471–474

    Google Scholar 

  • Nowicki, B. A., Nixon, S. W. (1985). Benthic nutrient remineralization in a coastal lagoon ecosystem. Estuaries 8: 182–190

    Google Scholar 

  • Orth, R. J., Moore, K. A. (1983). Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Science, N.Y. 222: 51–52

    Google Scholar 

  • Persky, J. H. (1986). The relation of ground-water quality to housing density, Cape Cod, Massachusetts. U.S. Geological Survey Report 86-4093, Boston, Massachusetts

  • Pomroy, A. J., Joint, I. R., Clarke, K. R. (1983). Benthic nutrient flux in a shallow coastal environment. Oecologia 60: 306–312

    Google Scholar 

  • Pregnall, A. M., Maier, C. M. (1988). Plant growth and root glutamine synthetase activity in eelgrass (Zostera marina) as affected by sediment ammonium content. EOS 69: 1115

    Google Scholar 

  • Pregnall, A. M., Miller, S. L. (1988). Flux of ammonium from surf-zone and nearshore sediments in Nahant Bay, Massachusetts, USA in relation to free-livingPilayella littoralis. Mar. Ecol. Prog. Ser. 50: 161–167

    Google Scholar 

  • Pregnall, A. M., Smith, R. D., Alberte, R. S. (1987). Glutamine synthetase activity and free amino acid pools of eelgrass (Zostera marina L.) roots. J. exp. mar. Biol. Ecol. 106: 211–228

    Google Scholar 

  • Pugh, K. B., (1983). Nutrient cycles in sandy beaches. In: McLachlan, A., Erasmus, A. (eds.) Sandy beaches as ecosystems. Junk, The Hague, p. 225–233

    Google Scholar 

  • Riedl, R. J. (1971). How much water passes through sandy beaches? Int. Rev ges. Hydrobiol. 56: 923–946

    Google Scholar 

  • Riedl, R. J., Huang, N., Machan, R. (1972). The subtidal pump: a mechanism of interstitial water exchange by wave action. Mar. Biol. 13: 210–221

    Google Scholar 

  • Roth, N. C., Pregnall, A. M. (1988). Nitrate reductase activity inZostera marina. Mar. Biol. 99: 457–463

    Google Scholar 

  • Sewell, P. L. (1982). Urban groundwater as a possible nutrient source for an estuarine benthic algal bloom. Estuar. cstl Shelf Sci. 15: 569–576

    Google Scholar 

  • Short, F. T., Mathieson, A. C., Nelson, J. I. (1986). Recurrence of the eelgrass wasting disease at the border of New Hampshire and Maine, USA. Mar. Ecol. Prog. Ser. 29: 89–92

    Google Scholar 

  • Short, F.T., McRoy, C. P. (1984). Nitrogen uptake by leaves and roots of the seagrassZostera marina L. Botanica mar. 27: 547–555

    Google Scholar 

  • Slater, J. M., Capone, D.G. (1987). Denitrification in aquifer soil and nearshore marine sediments influenced by groundwater nitrate. Appl. envirl Microbiol. 53: 1292–1297

    Google Scholar 

  • Smirnoff, N., Stewart, G. R. (1985). Nitrate assimilation and translocation by higher plants: comparative physiology and ecological consequences. Physiologia Pl 64: 133–140

    Google Scholar 

  • Solorzano, L. (1969). Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14: 799–801

    Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1968). A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can. 167

  • Thursby, G. B., Harlin, M. M. (1982). Leaf-root interaction in the uptake of ammonia byZostera marina. Mar. Biol. 72: 109–112

    Google Scholar 

  • Thursby, G. B., Harlin, M. M. (1984). Interactions of leaves and roots ofRuppia maritima in the uptake of phosphate, ammonia and nitrate. Mar. Biol. 83: 61–67

    Google Scholar 

  • Valiela, I. Costa, J. E. (1988). Eutrophication of Buttermilk Bay, a Cape Cod coastal embayment: concentrations of nutrients and watershed nutrient budgets. Environ. Mgmt 12: 539–551

    Google Scholar 

  • Valiela, I., Teal, J. M., Volkmann, S., Shafer, D., Carpenter, E. J. (1978). Nutrient and particulate fluxes in a salt marsh ecosystem: tidal exchanges and inputs by precipitation and groundwater. Limnol. Oceanogr. 23: 798–812

    Google Scholar 

  • Wheeler, W. N., Weidner, M. (1983). Effects of external inorganic nitrogen concentration on metabolism, growth and activities of key carbon and nitrogen assimilatory enzymes ofLaminaria saccharina (Phaeophyceae) in culture. J. Phycol. 19: 92–96

    Google Scholar 

  • Zimmerman, R. C., Kremer, J. N. (1986). In situ growth and chemical composition of the giant kelp,Macrocystis pyrifera — responses to temporal changes in ambient nutrient availability. Mar. Ecol. Prog. Ser. 27: 277–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, C.M., Pregnall, A.M. Increased macrophyte nitrate reductase activity as a consequence of groundwater input of nitrate through sandy beaches. Mar. Biol. 107, 263–271 (1990). https://doi.org/10.1007/BF01319825

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319825

Keywords

Navigation