Skip to main content
Log in

Heritability of juvenile growth for the hard clamMercenaria mercenaria

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The heritability of juvenile growth in the hard clamMercenaria mercenaria (L.) sampled from Wellfleet Harbor, USA, in 1987, was analyzed in two experiments using standard quantitative genetic methods. In the first experiment, culture density was not controlled and was found to have a significant impact upon the non-additive genetic component of growth, possibly through genotype-environment correlation. Variable clam density appeared to have little impact on the additive genetic variance component. Estimates of the narrow sense heritability, calculated from the additive genetic component, ranged from 0.72 (±0.32) to 0.91 (±0.17). Culture density was controlled in the second experiment. The narrow sense heritability estimate from this experiment was 0.37 (±0.13). These estimates suggest that selection, either natural or artificial could bring about rapid change in the mean phenotype(s) of juvenile growth characteristics in hard clams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bayne, B. L. (1976). Aspects of reproduction in bivalve mollusks. In: Wiley, M. (ed.) Estuarine processes, 1. Academic Press, New York

    Google Scholar 

  • Bayne, B. L., Newell, R. C. (1983). Physiological energetics of marine mollusks. In: Saleuddin, A. S. M., Wilbur, K. M. (eds.) The Mollusca, 4. Academic Press, New York

    Google Scholar 

  • Becker, W. A. (1984). Manual of quantitative genetics. Academic Enterprises, Pullman

    Google Scholar 

  • Bell, S. S., Coull, B. C. (1980). Experimental evidence for a model of juvenile macrofauna-meiofauna interactions. In: Tenore, K. R., Coull, B. C. (eds.) Marine benthic dynamics. Univ. South Carolina Press, Columbia

    Google Scholar 

  • Boag, P. T. (1983). The heritability of external morphology in Darwin's ground finches (Geospiza) on Isla Daphne Major, Galapagos. Evolution, Lancaster, Lawrence, Kansas 37:877–894

    Google Scholar 

  • Boag, P. T., Grant, P. R. (1981). Intense natural selection on a population of Darwin's finches (Geospizinae) in the Galapagos. Science, N.Y. 214:82–85

    Google Scholar 

  • Comstock, R. E., Robinson, H. F. (1952). Estimation of average dominance of genes. In: Gowen, J. W. (ed.) Heterosis. Iowa State College Press, Ames

    Google Scholar 

  • Diehl, W. J., Koehn, R. K. (1985). Multiple-locus heterozygosity, mortality, and growth in a cohort ofMytilus edulis. Mar. Biol. 32:303–311

    Google Scholar 

  • Eldridge, P. J., Eversole, A. G., Whetstone, J. M. (1979). Comparative survival and growth rates of hard clamsMercenaria mercenaria planted in trays subtidally and intertidally at varying densities in a South Caroline estuary. Proc. natn. Shellfish Ass. 69:30–39

    Google Scholar 

  • Falconer, D. S. (1981). Introduction to quantitative genetics. Longman Press, New York

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Freund, R. J., Littel, R. C., Spector, P. C. (1986). SAS System for linear models. SAS Institute, Cary

    Google Scholar 

  • Gaffney, P. M., Scott, T. M. (1984). Genetic heterozygosity and production traits in natural and hatchery populations of bivalves. Aquaculture, Amsterdam 42:289–302

    Google Scholar 

  • Gates, C. E., Shiue, C. J. (1962). The analysis of variance of the s-stage hierarchal classification. Biometrics 18:529–536

    Google Scholar 

  • Gillespie, J. H., Turelli, M. (1989). Genotype-environment interactions and the maintenance of polygenic variation. Genetics, Baltimore, MD, 121:129–138

    Google Scholar 

  • Hastings, A., Hom, C. L. (1989). Pleiotropic stabilizing selection limits the number of polymorphic loci to at most the number of characters. Genetics, Austin, Tex. 122:459–463

    Google Scholar 

  • Innes, D. J., Haley, L. E. (1977). Genetic aspects of larval growth under reduced salinity inMytilus edulis. Biol. Bull. mar. biol. Lab., Woods Hole 153:312–321

    Google Scholar 

  • Kaufman, K. W. (1981). Fitting and using growth curves. Oecologia 49:293–299

    Google Scholar 

  • Koehn, R. K., Diehl, W. J., Scott, T. M. (1988). The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam,Mulinia lateralis. Genetics, Baltimore, MD. 119:121–130

    Google Scholar 

  • Koehn, R. K., Milkman, R., Mitton, J. B. (1976). Population genetics of marine pelecypods. IV: Selection, migration and genetic differentiation in the blue musselMytilus edulis. Evolution, Lawrence, Kansas 30:2–32

    Google Scholar 

  • Kraeuter, J. N., Castagna, M., Dessel, R. van (1982). Egg size and larval survival ofMercenaria mercenaria (L.) andArgopecten irradians (Lammarck). J. exp. mar. Biol. Ecol. 56:3–8

    Google Scholar 

  • Lande, R. (1976). The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26:221–235

    Google Scholar 

  • Lannan, J. E. (1972). Estimating heritability and predicting response to selection for the Pacific Oyster,Crassostrea gigas. Proc. natl. Shellfish Ass. 62:62–66

    Google Scholar 

  • Losee, E. (1978). Influence of heredity on larval and spat growth inCrassostrea virginica. In: Avault, J. W. (ed.) Proc. 9th Ann Meet. Wld Maricult. Soc.

  • Mallet, A. L., Freeman, K. R., Dickie, L. M. (1986). The genetics of production characters in the blue musselMytilus edulis. I. A preliminary analysis. Aquaculture, Amsterdam 57:133–140

    Google Scholar 

  • Manzi, J. J. (1985). Clam aquaculture. In: Hunter, J. V., Brown, E. E. (eds.) Crustacean and mollusk aquaculture in the United States. AVI Publications, Westport

    Google Scholar 

  • Manzi, J. J., Haley, N. H., Maddox, B. (1985). Seed clam,Mercenaria mercenaria, culture in an experimental-scale upflow nursery system. Aquaculture, Amsterdam 54:301–312

    Google Scholar 

  • Mitchell-Olds, T., Rutledge, J. J. (1986). Quantitative genetics in nautral plant populations: a review of the theory. Am. Nat. 127:379–402

    Google Scholar 

  • Mousseau, T. A., Roff, D. A. (1987). Natural selection and the heritability of fitness components. Heredity, Lond. 59:181–197

    Google Scholar 

  • Newkirk, G. (1978). Interaction of genotype and salinity in larvae of the oysterCrassostrea virginica. Mar. Biol. 48:227–234

    Google Scholar 

  • Newkirk, G., Haley, L. E., Dingle, J. (1981). Genetics of the Blue MusselMytilus edulis (L.): Nonadditive genetic variation in larval growth rate. Can. J. Genet. Cytol. 23:349–354

    Google Scholar 

  • Paine, R. T. (1976). Size-limited predation: An observational and experimental approach with theMytilus-Pisaster interaction. Ecology 57:858–873

    Google Scholar 

  • Peterson, C. H., Beal, B. F. (1989). Bivalve growth and higher order interactions: Importance of density, site, and time. Ecology 70:1390–1404

    Google Scholar 

  • Rhoads, D. C., Young, D. K. (1970). The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. mar. Res. 28:150–178

    Google Scholar 

  • Robertson, A. (1959). Experimental design in the evaluation of genetic parameters. Biometrics 15:219–226

    Google Scholar 

  • Rose, M. R. (1985). Life history evolution with antagonistic pleiotropy and overlapping generations. Theor. Popul. Biol. 28:342–358

    Google Scholar 

  • Searle, S. R. (1971). Linear models. Wiley and Sons, New York

    Google Scholar 

  • Shaw, R. G. (1987). Maximum likelihood approaches applied to quantitative genetics in natural populations. Evolution, Lawrence, Kansas 41:812–826

    Google Scholar 

  • Tracey, M. L., Bellet, N. F., Gravem, C. D. (1975). Excess allozyme homozygosity and breeding population structure in the musselMytilus californianus. Mar. Biol. 32:303–311

    Google Scholar 

  • Via, S., Lande, R. (1987). Evolution of genetic variability in a spatially heterogeneous environment: effects of genotype-environment interaction. Genet. Res. 49:147–156

    Google Scholar 

  • Woodin, S. A., Marinelli, R. (1990). Biogenic habitat modification in marine sediments: The importance of species composition and activity. Proc. zool. Soc. Lond. (Symp.) (in press)

  • Zouros, E., Foltz, D. W. (1987). The use of allelic isozyme variation for the study of heterosis. Isozymes. Curr. Topics biol. Med. Res 13:1–59

    Google Scholar 

  • Zouros, E., Singh, S. M., Foltz, D. W., Mallet, A. (1983). Post-settlement viability in the American oyster (Crassostrea virginica): an overdominant phenotype. Genet. Res. 41:259–270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, Woods Hole

Contribution no. 793 from the Belle W. Baruch Institute for Marine Biology and Coastal Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawson, P.D., Hilbish, T.J. Heritability of juvenile growth for the hard clamMercenaria mercenaria . Mar. Biol. 105, 429–436 (1990). https://doi.org/10.1007/BF01316314

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01316314

Keywords

Navigation