Skip to main content
Log in

Nucleic acids and growth of larval and early juvenile spider crab,Hyas araneus

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The spider crabHyas araneus (L.) was collected from the North Sea in winter 1986–1987 and reared in the laboratory from hatching of the Zoea I (ZI) through the first juvenile instar (CI). Within a given moult cycle, individuals of the same age were sampled in intervals of 2 (ZI, ZII, CI) or 3 d (megalopa) for analysis of dry weight (W), carbon (C), nitrogen (N), hydrogen (H), protein, DNA, and RNA. Lipid was calculated from C. Biomass, growth rate and nucleic acid contents showed high variability during each moult cycle and between instars. Instantaneous growth rates of C were high in postmoult and intermoult, and low in the premoult period of each moult cycle. A shift was observed from high rates of lipid accumulation in the postmoult and intermoult stages to proportionally increasing protein accumulation during late premoult (ZI), or throughout a major part of the remaining moult cycle (in all other instars). DNA was accumulated throughout the ZI and ZII instars, but decreased in late premoult megalopa. It increased again from late intermoult through intermediate premoult in juveniles. RNA increased continuously during ZI and ZII, and decreased in the megalopa, almost to levels that had been found immediately after hatching. In juveniles, variation in RNA followed closely those in DNA. Cell multiplication (expressed by DNA increase) dominated over increase in cell size (defined by the C/DNA ratio) during the zoeal instars and in postmoult through early intermoult in the megalopa and CI. When specific (C-related) RNA values and RNA/DNA ratios were compared with instantaneous growth rates in C and N, no general correspondence was detected. The only significant relationship between specific RNA values and instantaneous C or N growth rates was found in the megalopa. The same held for the relationship between the RNA/DNA ratio and growth. Here, in addition to the megalopa, a correspondence with C growth was also found in the CI instar. Our results suggest that variation in nucleic acids may provide useful insights into mechanisms of growth on the cellular level (cell multiplication vs cell enlargement). However, lack of general correlation with variation in growth rates ofH. araneus larvae shows that the use of nucleic acids as a measure of growth is probably based upon too simplistic assumptions; it may not yield reliable predictions, when growth is associated with developmental events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Andries, J. C. (1979). Effect ofα- andβ-ecdysone on DNA synthesis inAeshna cyanea (Insecta, Odonata) midgut. Experientia 35: 122–124

    Google Scholar 

  • Anger K. (1983). Moult cycle and morphogenesis inHyas araneus larvae (Decapoda, Majidae), reared in the laboratory. Helgoländer Meeresunters. 36: 285–302

    Google Scholar 

  • Anger K. (1987). The D0 threshold: a critical point in the larval development of decapod crustaceans. J. exp. mar. Biol. Ecol. 108: 15–30

    Google Scholar 

  • Anger K., Dawirs R. R. (1982) Elemental composition (C, N, H) and energy in growing and starving larvae ofHyas araneus (Decapoda, Majidae). Fish. Bull. U.S. 80: 419–433

    Google Scholar 

  • Anger, K., Harms, J. (1989). Changes in the energy budget of a decapod crustacean from the North Sea during planktonic larval development. In: Universidade Federal do Paraná, Curitiba (ed.). Memórias do III Encontro Brasileiro de Plâncton, Caiobá (PR), Brazil, p. 157–169

    Google Scholar 

  • Anger, K., Harms, J., Püschel, C., Seeger, B. (1989). Physiological and biochemical changes during the larval development of a brachyuran crab reared under constant conditions in the laboratory. Helgoländer Meeresunters. 43: 225–244

    Google Scholar 

  • Anger K., Laasch N., Püschel C., Schorn F. (1983). Changes in biomass and chemical composition of spider crab (Hyas araneus) larvae reared in the laboratory. Mar. Ecol. Prog. Ser. 12: 91–101

    Google Scholar 

  • Båmstedt, U., Skjoldal, H. R. (1976). Studies on the deep-water pelagic community of Korsfjorden, Western Norway. Adenosine phosphates and nucleic acids inEuchaeta norvegica (Copepoda) in relation to its life cycle. Sarsia 60: 63–80

    Google Scholar 

  • Båmstedt, U., Skjoldal, H. R. (1980). RNA concentration of zooplankton: relationship with size and growth. Limnol. Oceanogr. 25: 304–316

    Google Scholar 

  • Boivin, A., Vendrely, R., Vendrely, C. (1948). L'acide desoxyribonucléique du noyau cellulaire, dépositaire des caractères héréditaires; arguments d'ordre analytique. C.r. hebd. Séanc. Acad. Sci., Paris 226: 1061–1062

    Google Scholar 

  • Brachet, J. (1961). Nucleocytoplasmic interactions in unicellular organisms. In: Brachet, J., Mirsky, A. E. (eds.). The cell. Academic Press, New York, p. 771–841

    Google Scholar 

  • Buckley, L. J. (1980). Changes in ribonucleic acid, deoxyribonucleic acid, and protein content during ontogenesis in winter flounder,Pseudopleuronectes americanus, and effect of starvation. Fish. Bull. U.S. 77: 703–708

    Google Scholar 

  • Buckley, L. J. (1984). RNA-DNA ratio: an index of larval fish growth in the sea. Mar. Biol. 80: 291–298

    Google Scholar 

  • Bulow, F. J. (1970). RNA-DNA ratios as indicators of recent growth rates of a fish. J. Fish. Res. Bd. Can. 27: 2343–2349

    Google Scholar 

  • Calvez, B., Fourche, J. (1980). Protein synthesis in the fat body of the fifth larval instarPhilosamia cynthia larvae — relation to two feeding periods. Dev., Growth Differentiation 22: 93–102

    Google Scholar 

  • Campillo, A., Regnault, M., Luquet, P. (1975). Evolution des acides nucléiques au cours du développement larvaire de la crevette rosePalaemon serratus (Pennant). Revue Trav. Inst. (scient. techn.) Pech. marit. 39: 333–342

    Google Scholar 

  • Christiansen, M. E. (1973). The complete larval development ofHyas araneus (Linnaeus) andHyas coarctatus (Decapoda, Brachyura, Majidae) reared in the laboratory. Norw. J. Zool. 21: 63–89

    Google Scholar 

  • Christiansen, M. E. (1988). Hormonal processes in decapod crustacean larvae. In: Fincham, A. A., Rainbow, P. S. (eds.) Aspects of decapod crustacean biology. Symposia of the Zoological Society of London, Vol. 59. Clarendon Press, Oxford, p. 47–68

    Google Scholar 

  • Dagg, M. J., Littlepage, J. L. (1972). Relationships between growth rate and RNA, DNA, protein and dry weight inArtemia salina andEuchaeta elongata. Mar. Biol. 17: 162–170

    Google Scholar 

  • Durand, G., Fauconneau, G., Penot, E. (1965). Etude biochimique de la croissance de l'intestin grêle, du foie et de la carcasse dur rat, róles respectifs de la multiplication et du grandissement cellulaires. Annls Biol. anim. Biochim. Biophys. 5: 163–187

    Google Scholar 

  • Dyer, K. A., Thornhill, W. B., Riddiford, L. M. (1981). DNA synthesis during the change to pupal commitment ofManduca epidermis. Devel. Biol. 84: 425–431

    Google Scholar 

  • Falkowski, P. G., Owens, T. G. (1982). A technique for estimating phytoplankton division rates by using a DNA-binding fluorescent dye. Limnol. Oceanogr. 27: 776–782

    Google Scholar 

  • Freeman, J. A. (1980). Hormonal control of chitinolytic activity in the integument ofBalanus amphitrite, in vitro. Comp. Biochem. Physiol. 65: 13–17

    Google Scholar 

  • Freeman, J. A. (1986). Epidermal cell proliferation during thoracic development in larvae ofArtemia. J. Crustacean Biol. (Lawrence, Kansas) 6: 37–48

    Google Scholar 

  • Freeman, J. A., Chronister, R. B. (1988). Cell-specific endopolyploidy in developingArtemia. Wilhelm Roux Arch. dev. Biol. 197: 490–495

    Google Scholar 

  • Freeman, J. A., Costlow, J. D. (1983a). The cyprid moult cycle and its hormonal control in the barnacleBalanus amphitrite. J. Crustacean Biol. (Lawrence, Kansas) 3: 173–182

    Google Scholar 

  • Freeman, J. A., Costlow, J. D. (1983b). Endocrine control of spine epidermis resorption during metamorphosis in crab larvae. Wilhelm Roux Arch. dev. Biol. 192: 362–365

    Google Scholar 

  • Freeman, J. A., West, T. L., Costlow, J. D. (1983). Postlarval growth in juvenileRhithropanopeus harrisii. Biol. Bull. mar. biol. Lab. Woods Hole 165: 409–415

    Google Scholar 

  • Gorell, T. A., Gilbert, L. I. (1971). Protein and RNA synthesis in the premolt crayfishOrconectes virilis. Z. vergl. Physiol. 73: 345–356

    Google Scholar 

  • Helm, M. M., Holland, D. L., Stevenson, R. R. (1973). The effect of supplementary algal feeding of a hatchery breeding stock ofOstrea edulis L. on larval vigour. J. mar. biol. Ass. U. K. 53: 673–684

    Google Scholar 

  • Hirche, H.-J., Anger, K. (1987). Digestive enzyme activities during larval development ofHyas araneus (Decapoda, Majidae). Comp. Biochem. Physiol. 87B: 297–302

    Google Scholar 

  • Höcker, B. (1988). Licht- und elektronenmikroskopische Untersuchungen zur Larval- und Juvenilentwicklung der Seespinne (Hyas araneus: Decapoda, Majidae) unter besonderer Berücksichtigung des Y-Organs, Diplomarbeit, Universität Hamburg

    Google Scholar 

  • Humphreys, C. R., Stevenson, J. R. (1973). Changes in the epidermal DNA, protein and protein synthesis during the moult cycle of the crayfishOrconectes sanborni (Faxon). Comp. Biochem. Physiol. 44A: 1121–1128

    Google Scholar 

  • Johnson, P. T. (1980). Histology of the blue crab,Callinectes sapidus: a model for the Decapoda. Praeger Publishers, New York, p. 1–440

    Google Scholar 

  • Jürss, K., Bittorf, Th., Vökler, Th. (1986). Influence of salinity and food deprivation on growth, RNA/DNA ratio and certain enzyme activities in rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. 83B: 425–433

    Google Scholar 

  • Jürss, K., Bittorf, Th., Vökler, Th., Wacke, R. (1987). Effects of temperature, food deprivation and salinity on growth, RNA/DNA ratio and certain enzyme activities in rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. 87B: 241–254

    Google Scholar 

  • Kato, Y. (1977). Mitotic frequency in the epidermis during early life inBombyx mori. Zool. Mag., Tokyo 86: 250–253

    Google Scholar 

  • Leick, V. (1968). Ratio between contents of DNA-RNA and protein in different microorganisms as a function of maximal growth rate. Nature, Lond. 217: 1153–1155

    Google Scholar 

  • Le Roux, A. (1978). La crise mitotique dans le proventricule des zoés I et II dePisidia longicornis (Linné): sa position en fonction des stades du cycle d'intermue. Archs. Zool. exp. gen. 119: 353–363

    Google Scholar 

  • Leslie, I. (1955). The nucleic acid content of tissues and cells. In: Chargaff, E., Davidson, J.-N. (eds.) The nucleic acids: chemistry and biology, Vol. 2. Academic Press, New York, p. 1–50

    Google Scholar 

  • Locke, M. (1970). The molt/intermoult cycle in the epidermis and other tissues of an insect,Calpodes ethlius (Lepidoptera, Hesperiidae). Tissue Cell 2: 197–223

    Google Scholar 

  • Locke, M. (1981). Cell structure during insect metamorphosis. In: Gilbert, L. I., Freiden, E. (eds.) Metamorphosis: a problem in developmental biology, 2nd ed. Plenum Press, New York, p. 75–103

    Google Scholar 

  • Locke, M., Condoulis, W. V., Hurshman, L. F. (1965). Molt and intermolt activities in the epidermal cells of an insect. Science, N.Y. 149: 437–438

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, L. Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275

    Google Scholar 

  • Lucas, A., Beninger, P. G. (1985). The use of physiological condition indices in marine bivalve. Aquaculture, Amsterdam 44: 187–200

    Google Scholar 

  • Lucien-Brun, H., Van Wormhoudt, A., Lachaux, A., Ceccaldi, H. J. (1985). Effets de régimes composés sur la croissance de homards juvéniles,Homarus gammarus L.: Estimation biochimique de la composition optimale du régime alimentaire en protéines. Aquaculture, Amsterdam 46: 87–109

    Google Scholar 

  • McConaugha, J. R. (1980). Identification of the Y-organ in the larval stages of the crab,Cancer anthonyi Rathbun. J. Morphol. 164: 83–88

    Google Scholar 

  • Mittwoch, U., Kalmus, H., Webster, W. S. (1966). Deoxyribonucleic acid values in dividing and non-dividing cells of male and female larvae of the honeybee. Nature, Lond. 210: 264–266

    Google Scholar 

  • Munro, H. N., Gray, J. A. M. (1969). The nucleic acid content of sceletal muscle and liver in mammals of different body size. Comp. Biochem. Physiol. 28: 897–905

    Google Scholar 

  • Neidhardt, F. C., Magasanic, B. (1960). Studies on the role of ribonucleic acid in the growth of bacteria. Biochem. Biophys. Acta. 42: 99–116

    Google Scholar 

  • Ota, A., Y., Landry, M. R. (1984). Nucleic acids as growth rate indicators for early developmental stages ofCalanus pacificus Brodsky. J. exp. mar. Biol. Ecol. 80: 147–160

    Google Scholar 

  • Passano, L. M. (1960). Molting and its control. In: Waterman, T. H. (ed.) The physiology of Crustacea, Vol. I. Academic Press, New York, London, p. 473–536

    Google Scholar 

  • Prasad, A. S., Du Mouchelle, E., Loniuch, D., Oberleas, D. (1972). A simple fluorometric method for the determination of RNA and DNA in tissues. J. Lab. clin. med. 80: 598–602

    Google Scholar 

  • Regnault, M., Luquet, P. (1974). Study by evolution of nucleic acid content of prepuberal growth in the shrimpCrangon crangon. Mar. Biol. 25: 291–298

    Google Scholar 

  • Regnault, M., Luquet, P. (1976). Influence du régime alimentaire sur les modalités de la croissance, estimèes par l'évolution des acides nucléiques, chez la crevette griseCrangon crangon L. J. Physiol. Paris 72: 959–970

    Google Scholar 

  • Skinner, D. m., Graham, D. E., Holland, C. A., Mykles, D. L., Soumoff, C., Yamaoka, L. H. (1985). Control of molting in Crustacea. In: Wenner, A. M. (ed.) Factors in adult growth. A. A. Balkema, Rotterdam, p. 3–14

    Google Scholar 

  • Speck, U., Urich, K. (1971). Quantitative Bedeutung der Reservestoffe für Chitinsynthese, Energiestoffwechsel und osmotische Vorgänge während der Häutung des FlußkrebsesOrconectes limosus. Z. vergl. Physiol. 71: 286–294

    Google Scholar 

  • Speck, U., Urich, K. (1972). Resorption des alten Panzers vor der Häutung bei dem FlußkrebsOrconectes limosus. Schicksal des freigesetzten N-Acetylglucosamins. J. comp. Physiol. (Sect. B) 78: 210–220

    Google Scholar 

  • Spindler, K.-D. (1983). Chitin: its synthesis and degradation in arthropods. In: Scheller, K. (ed.) The larval serum proteins of insects. Function, biosynthesis, genetic. Georg Thieme Verlag, Stuttgart, p. 135–150

    Google Scholar 

  • Spindler, K.-D., Anger, K. (1986). Ecdysteroid levels during the larval development of the spider crabHyas araneus. Gen. comp. Endocr. 64: 122–128

    Google Scholar 

  • Spindler-Barth, M. (1976). Changes in the chemical composition of the common shore crab,Carcinus maenas, during the moult cycle. J. comp. Physiol. 105B: 197–205

    Google Scholar 

  • Stevenson, J. R. (1972). Changing activities of the Crustacean epidermis during the moult cycle. Am. Zool. 12: 373–380

    Google Scholar 

  • Storch, V., Anger K. (1983) Influence of starvation and feeding on the hepatopancreas of larvalHyas araneus (Decapoda, Majidae). Helgoländer Meeresunters. 36: 67–75

    Google Scholar 

  • Sulkin, S. D. (1984). Behavioral basis of depth regulation in the larvae of brachyuran crabs. Mar. Ecol. Prog. Ser. 15: 181–205

    Google Scholar 

  • Sulkin, S. D., Morgan, R. P., Minasian, L. L. (1975). Biochemical changes during larval development of the xanthid crabRhithropanopeus harrisii. II. Nucleic acids. Mar. Biol. 32: 113–117

    Google Scholar 

  • Sutcliffe, W. H. Jr (1965). Growth estimates from ribonucleic acid content in some small organisms. Limnol. Oceanogr. 10 (suppl): R253-R258

    Google Scholar 

  • Sutcliffe, W. H. Jr (1970). Relationship between growth rate and ribonucleic acid concentration in some invertebrates. J. Fish. Res. Bd Can. 27: 606–609

    Google Scholar 

  • Van Wormhoudt, A., Porcheron, P., Le Roux, A. (1985). Ecdysteroides et syntheses proteiques dans l'hepatopancreas dePalaemon serratus (Crustacea Decapoda) au cours du cycle d'intermue. Bull. Soc. zool. Fr. 110: 191–204

    Google Scholar 

  • Walley, L. J. (1969). Studies on the larval structure and metamorphosis ofBalanus balanoides (L.). Phil. Trans. R. Soc. (Ser. B) 256: 237–279

    Google Scholar 

  • Wang, S. Y., Stickle, W. B. (1986). Changes in nucleic acid concentration with starvation in the blue crabCallinectes sapidus Rathbun. J. Crustacean Biol. (Lawrence, Kansas) 6: 49–56

    Google Scholar 

  • Wang, S. Y., Stickle, W. B. (1988). Biochemical composition of the blue crabCallinectes sapidus exposed to the water-soluble fraction of crude oil. Mar. Biol. 98: 23–30

    Google Scholar 

  • Wielgus, J. J., Bollenbacher, W. E., Gilbert, L. I. (1979). Correlations between epidermal DNA synthesis and haemolymph ecdysteroid titre during the last larval instar of the tobacco hornwormManduca sexta J. Insect Physiol. 25: 9–16

    Google Scholar 

  • Wright, D. A., Hetzel, E. W. (1985). Use of RNA/DNA ratios as an indicator of nutritional stress in the American oysterCrassostrea virginica. Mar. Ecol. Prog. Ser. 25: 199–206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anger, K., Hirche, H.J. Nucleic acids and growth of larval and early juvenile spider crab,Hyas araneus . Mar. Biol. 105, 403–411 (1990). https://doi.org/10.1007/BF01316311

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01316311

Keywords

Navigation