Skip to main content
Log in

Acetate uptake from ambient water by the free-living marine nematodeAdoncholaimus thalassophygas

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Nematodes belonging to the family Oncholaimidae are known to aggregate at sites of organic pollution. The oncholaimidAdoncholaimus thalassophygas (De Man, 1876), collected from the Weser Estuary, FRG, in 1989, has the capability to take up acetate at naturally occurring concentrations. Under almost axenic conditions, ca 2.3 to 3.0 ng sodium acetate was taken-up per worm within 24 h, when an ambient concentration of 0.33 mmol was offered. The concentration factor was ca 8.5 to 11.1. The results suggest that a highly motile oxybiotic nematode may benefit from the fermentation products of anoxic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Andrássy, I. (1956). Die Rauminhalts- und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta zool. hung. 2: 1–15

    Google Scholar 

  • Ansbaek J., Blackburn, T. H. (1980). A method for the analysis of acetate turnover in a coastal marine sediment. Microb. Ecol. 5: 253–264

    Google Scholar 

  • Bett, B. J., Moore, C. G. (1988). The taxonomy and biology of a new speciesPontonema (Nematoda, Oncholaimidae) dominant in organically polluted sublittoral sediments around Scotland, with a review of the genus. J. nat. Hist. 22: 1363–1377

    Google Scholar 

  • Billen G., Putman, J. (1978). An approach for studying the pathways of organic matter degradation in aquatic ecosystems. Preliminary investigations on the distribution and utilization of lactate and acetate in marine, estuarine and sedimentary environments. Thalassia Jugosl. 14: 381–394

    Google Scholar 

  • Bolla, R. (1980). Nematode energy metabolism. In: Zuckerman, B. M. (ed.) Nematodes as biological models, Vol. 2. Academic Press, New York, p. 165–192

    Google Scholar 

  • Bouwman, L. A., Romeyn, K., Admiraal, W. (1984). On the ecology of meiofauna in an organically polluted estuarine mudflat. Estuar. cstl Shelf Sci. 19: 633–653

    Google Scholar 

  • Chia, F.-S., Warwick, R. M. (1969). Assimilation of labelled glucose from seawater by marine nematodes. Nature, Lond. 224: 720–721

    Google Scholar 

  • Cioni, M., Pinzauti, G., Vanni, P. (1981). Comparative biochemistry of the glyoxylate cycle. Comp. Biochem. Physiol. 70B: 1–26

    Google Scholar 

  • Cullen, D. J. (1973). Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature, Lond. 241: 323–324

    Google Scholar 

  • DeLong, E. F., Yayanos, A. A. (1986). Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl. envirl. Microbiol. 51: 730–737

    Google Scholar 

  • Felbeck, H., Liebezeit, G., Dawson, R., Giere, O. (1983). CO2fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus andP. planus) containing symbiotic, chemoautotrophic bacteria. Mar. Biol. 75: 187–191

    Google Scholar 

  • Fenchel, T. M., Riedl, R. J. (1970). The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7: 255–268

    Google Scholar 

  • Gibson, G. R., Parkes, R. J., Herbert, R. A. (1989). Biological availability and turnover rate of acetate in marine and estuarine sediments in relation to dissimilatory sulphate reduction. Fedn. eur. microbiol. Soc. (FEMS) Microbiol. Ecol. 62: 303–306

    Google Scholar 

  • Giere, O., Wirsen, C. O., Schmidt, C., Jannash, H. W. (1988). Contrasting effects of sulfide and thiosulfate on symbiotic CO2-as-similation ofPhallodrilus leukodermatus (Annelida). Mar. Biol. 97: 413–419

    Google Scholar 

  • Gunnarsson, L. A. H., Rönnow, P. H. (1982). Interrelationships between sulfate reducing and methane producing bacteria in coastal sediments with intense sulfide production. Mar. Biol. 69: 121–128

    Google Scholar 

  • Heip, C., Vincx, M., Vranken, G. (1985). The ecology of marine nematodes. Oceanogr. mar. Biol. A. Rev. 23: 399–489

    Google Scholar 

  • Hipp, E., Bickel, U., Mustafa, T., Hoffmann, K. H. (1986b). Integumentary uptake of acetate and propionate (VFA) byTubifex sp., a freshwater oligochaete. II. Role of VFA as nutritional resources and effects of anaerobiosis. J. exp. Zool. 240: 299–308

    Google Scholar 

  • Hipp, E., Mustafa, T., Bickel, U., Hoffmann, K. H. (1986a). Integumentary uptake of acetate and propionate (VFA) byTubifex sp., a freshwater oligochaete. I. Uptake rates and transport kinetics. J. exp. Zool. 240: 289–297

    Google Scholar 

  • Hipp, E., Mustafa, T., Hoffmann, (1985). Integumentary uptake of volatile fatty acids by the freshwater oligochaeteTubifex. Naturw. 72: 148–149

    Google Scholar 

  • Hoffmann, K. H., Seuss, J., Hipp., Sedlmeier, U. A. (1986). Aerobic and anaerobic metabolism inTubifex, a freshwater oligochaete. Zool. Beitr. 30: 153–170

    Google Scholar 

  • Holst, H., Zebe, E. (1984). Absorption of volatile fatty acids from ambient water by the lugwormArenicola marina. Mar. Biol. 80: 125–130

    Google Scholar 

  • Jensen, P. (1986). Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. Mar. Biol. 92: 489–503

    Google Scholar 

  • Jensen, P. (1987a). Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71: 564–567

    Google Scholar 

  • Jensen, P. (1987b). Feeding ecology of free-living aquatic nematodes. Mar. Ecol. Prog. Ser. 35: 187–196

    Google Scholar 

  • Jörgensen, B. B. (1977). Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41: 7–17

    Google Scholar 

  • Lopez, G., Riemann, F., Schrage, M. (1979). Feeding biology of the brackish-water oncholaimid nematodeAdoncholaimus thalassophygas. Mar. Biol 54: 311–318

    Google Scholar 

  • Lorenzen, S., Prein, M., Valentin, C. (1987). Mass aggregations of the free-living marine nematodePontonema vulgare (Oncholaimidae) in organically polluted fjords. Mar. Ecol. Prog. Ser. 37: 27–34

    Google Scholar 

  • Meschkat, A. (1934). Der Bewuchs in den Röhrichten des Plattensees. Arch. Hydrobiol. 27: 436–517

    Google Scholar 

  • Meyers, M. B., Fossing, H., Powell, E. N. (1987). Microdistribution of interstitial meiofauna, oxygen and sulfide gradients, and the tubes of macro-infauna. Mar. Ecol. Prog. Ser. 35: 223–241

    Google Scholar 

  • Nedwell, D. B. (1984). The input and mineralization of organic carbon in anaerobic aquatic sediments. Adv. microb. Ecol. 7: 93–131

    Google Scholar 

  • Nicholas, W. L. (1984). The biology of free-living nematodes, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Nuß, B. (1985). Ultrastrukturuntersuchungen zur Nahrungsabsorption von aquatischen Nematoden. Veröff. Inst. Meeresforsch. Bremerh. 21: 1–69

    Google Scholar 

  • Parkes, R. J., Taylor, J. (1983). Analysis of volatile fatty acids by ion-exclusion chromatography, with special reference to marine pore water. Mar. Biol. 77: 113–118

    Google Scholar 

  • Phillips, N. W. (1984). Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull. mar. Sci. 35: 283–298

    Google Scholar 

  • Prein, M. (1988). Evidence for a scavenging lifestyle in the free-living nematodePontonema vulgare (Enoplida, Oncholaimidae). Kieler Meeresforsch. Sonderh. 6: 389–394

    Google Scholar 

  • Reise, K., Ax, P. (1979). A meiofaunal “Thiobios” limited to the anaerobic sulfide system of marine sand does not exist. Mar. Biol. 54: 225–237

    Google Scholar 

  • Revsbech, N. P., Sörensen, J., Blackburn, T. H., Lomholt, J. P. (1980). Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25: 403–411

    Google Scholar 

  • Riemann, F. (1986). Berichte der Abteilungen: Nematodenkunde. Veröff. Inst. Meeresforsch. Bremerh. 21: 195–201

    Google Scholar 

  • Riemann, F., Schrage, M. (1978). The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia 34: 75–88

    Google Scholar 

  • Riemann, F., Schrage, M. (1988). Carbon dioxide as an attractant for the free-living marine nematodeAdoncholaimus thalassophygas. Mar. Biol. 98: 81–85

    Google Scholar 

  • Rothstein, M. (1970). Nematode biochemistry XI, biosynthesis of fatty acids byCaenorhabditis briggsae andPanagrellus redivivus. Int. J. Biochem. 1: 422–428

    Google Scholar 

  • Rothstein, M., Götz, P. (1968). Biosynthesis of fatty acids in the free-living nematode,Turbatrix aceti. Archs Biochem. Biophys. 126: 131–140

    Google Scholar 

  • Rothstein, M., Mayoh, H. (1966). Nematode biochemistry — VIII. Malate synthetase. Comp. Biochem. Physiol. 17: 1181–1188

    Google Scholar 

  • Rudnick, D. T., Elmgren, R., Frithsen, J. B. (1985). Meiofaunal prominence and benthic seasonality in a coastal marine ecosystem. Oecologia 67: 157–168

    Google Scholar 

  • Scherer, B. (1985). Annual dynamics of a meiofauna community from the ‘sulfide layer’ of a North Sea sand flat. Mikrofauna mar. 2: 117–161

    Google Scholar 

  • Sedlmeier, U., A. (1987). Mechanismen der Aufnahme und Verwertung von gelöstem organischem Material durch den SüßwasseroligochaetenTubifex. Dissertation University Ulm

  • Sikora, W. B., Sikora, J. P. (1982). Ecological implications of the vertical distribution of meiofauna in salt marsh sediments. In: Kennedy, V. S. (ed.) Estuarine comparisons. Academic Press, New York, p. 269–282

    Google Scholar 

  • Thomas, J. D., Sterry, P. R., Patience, R. L. (1984). Uptake and assimilation of short chain carboxylic acids byBiomphalaria glabrata (Say), the freshwater pulmonate snail host ofSchistosoma mansoni (Sambon). Proc. R. Soc. (Ser. B) 222: 447–476

    Google Scholar 

  • Ward, D. M., Winfrey, M. R. (1985). Interactions between methanogenic and sulfate-reducing bacteria in sediments. In: Jannasch, H. W., Williams, P. LeB. (eds.) Advances in aquatic microbiology, Vol. 3. Academic Press, London, p. 141–179

    Google Scholar 

  • Wieser, W. (1960). Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr. 5: 121–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Contribution No. 251 of the Alfred-Wegener-Institute for Polar and Marine Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riemann, F., Ernst, W. & Ernst, R. Acetate uptake from ambient water by the free-living marine nematodeAdoncholaimus thalassophygas . Mar. Biol. 104, 453–457 (1990). https://doi.org/10.1007/BF01314349

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01314349

Keywords

Navigation