Skip to main content
Log in

Metabolism of palmitic, linoleic, and linolenic acids in adult oysters,Crassostrea virginica

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study investigated incorporation and metabolism of saturated [(1-14C) 16:0] and unsaturated [(1-14C) 18:2ω6 and (1-14C) 18:3ω3] fatty acids in adult eastern oysters,Crassostrea virginica Gmelin (spawned from parents obtained in 1986 from Mobjack Bay, Virginia, USA), and the influence of temperature on these processes. InC. virginica, incorporation of injected palmitic (16:0) and linolenic (18:3ω3) acids was increased when oysters which had been grown in warm water (22 to 23°C) were transfered to cold water (5 to 7°C) for 8 to 18 d. Incorporation of linoleic acid (18:2ω6) was unchanged under these conditions. The changes in concentration may have been linked to depression of metabolism in these oysters, in particular that of 16:0, which was reduced by 90%. Oxidation of incorporated fatty acids was much higher in warm than in cold water. Cold-temperature conditioning ofC. virginica altered the distribution of fatty acids among the neutral and polar lipid fractions. Long-term exposure to cold water increased the proportion of fatty acids in the polar fraction, which may be related to maintenance of membrane fluidity. Short-term exposure to cold water had the opposite effect, which may be due to increased energy requirements as the oyster adapts to new conditions. Reutilization of14C-acyl groups demonstrated de novo synthesis of 16:0 and 18:0 fatty acids. Only limited elongation and no desaturation of the administered fatty acids was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Behar, D., Cogan, U., Viola, S., Mokady, S. (1989). Dietary fish oil augments the function and fluidity of the intestinal brush-border membrane of the carp. Lipids 24: 737–742

    Google Scholar 

  • Bligh, E. G., Dyer, W. M. (1959). A rapid method of lipid extraction and purification. Can. J. Biochem. Physiol. 35: 911–917

    Google Scholar 

  • Chapelle, S. (1978). The influence of acclimation temperature on the fatty acid composition of an aquatic crustacean (Carcinus maenas). J. exp. Zool. 204: 337–346

    Google Scholar 

  • Chu, F.-L. E., Dupuy, J. L., Webb, K. L. (1982). Polysaccharide composition of five algal species used as food for larvae of the American oyster,Crassostrea virginica. Aquaculture, Amsterdam 29: 241–252

    Google Scholar 

  • Chu, F.-L. E., Webb, K. L. (1984). Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster,Crassostrea viginica. Lipids 19: 815–820

    Google Scholar 

  • Chu, F.-L. E., Webb, K. L., Chen, J. (1990). The seasonal changes of lipids and fatty acids in oyster tissues (Crassostrea viginica) and estuarine particulate matter. Comp. Biochem. Physiol. 95 A: 385–391

    Google Scholar 

  • Cowey, C. B., Sargent, J. R. (1979). Nutrition. In: Hoar, W. S., Randall, D. J., Brett, J. R. (eds.) Fish physiology, Vol. VIII, Chapter I. Academic Press, New York, p. 1–58

    Google Scholar 

  • DeLong, E. F., Yayanos, A. A. (1986). Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl. envirl Microbiol. 51: 730–737

    Google Scholar 

  • DeMoreno, J. E. A., Moreno, V. J., Brenner, K. R. (1976). Lipid metabolism of the yellow clamMesodesma matroides: 2. Polyunsaturated fatty acid metabolism. Lipids 11: 561–566

    Google Scholar 

  • Farkas, T. (1970). Fats in freshwater crustaceans: fatty acid composition of lipid obtained fromEudiaptomus gracilis G. O. Sars (copepoda) andDaphnia culcullata G. O. Sars (cladocera). Acta biol. hung. 21: 225–233

    Google Scholar 

  • Farkas, T. (1984). Adaptation of fatty acid composition to temperature — a study on carp (Cyprinus carpio L.) liver slices. Comp. Biochem. Physiol. 79B: 531–535

    Google Scholar 

  • Farkas, T., Csengeri, I. (1978). Biosynthesis of fatty acids by the carp,Cyprinus carpio, L., in realtion to environmental temperature. Lipids 11: 401–407

    Google Scholar 

  • Farkas, T., Csengeri, I., Majoros, F., Olah, J. (1980). Metabolism of fatty acids in fish. III. Combined effect of environmental temperature and diet on formation and deposition of fatty acids in the carp,Cyprinus carpio Linnaeus 1758. Aquaculture, Amsterdam 20: 29–40

    Google Scholar 

  • Farkas, T., Herodek, S. (1960). Seasonal changes in the fat contents of the crustacean plankton in Lake Balaton. Annls Biol. 27: 3–7

    Google Scholar 

  • Farkas, T., Herodek, S. (1964). The effect of environmental temperature on the fatty acid composition of crustacean plankton. J. Lipid Res. 5: 369–379

    Google Scholar 

  • Farkas, T., Kariko, K., Csengeri, I. (1981). Incorporation of (1-14C)-acetate into fatty acids of the crustaceansDaphnia magna andCyclops strenus in relation to temperature. Lipids 16: 418–422

    Google Scholar 

  • Gurr, M. I., James, A. T. (1971). Lipid biochemistry: an introduction. Cornell University Press, Ithaca

    Google Scholar 

  • Haas, L. W. (1982). Improved epifluorescence microscopy for observing planktonic microorganisms. Annls Inst. océanogr., Paris 58: 261–266

    Google Scholar 

  • Harvey, H. R., Eglinton, G., O'Hara, S. C. M., Corner, E. D. S. (1987). Biotransformation and assimilation of dietary lipids byCalanus feeding on a dinoflagellate. Geochim. cosmochim. Acta 51: 3031–3040

    Google Scholar 

  • Hazel, J. R., Prosser, C. L. (1974). Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev. 54: 620–677

    Google Scholar 

  • Hobbie, J. E., Daley, R. J., Jasper, S. (1977). Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl envirl Microbiol. 33: 1225–1228

    Google Scholar 

  • Holland, D. L. (1978). Lipid reserve and energy metabolism in the laws of benthic marine invertebrate. In: Malins, D. C., Sargent, J. R. (eds.) Biochemical and biophysical perspectives in marine biology, Vol. 4. Academic Press, New York, p. 85–123

    Google Scholar 

  • Jones, D. A., Kanazawa, A., Ono, K. (1979). Studies on the nutritional requirements of the larval stages ofPenaeus japonicus using microencapsulated diets. Mar. Biol. 54: 261–267

    Google Scholar 

  • Kanazawa, A., Toikiwa, S., Kayama, M., Hirata, M. (1977). Essential fatty acids in the diet of the prawn. I. Effects of linoleic and linolenic acids on growth. Bull. Jap. Soc. scient. Fish. 43: 1111–1114

    Google Scholar 

  • Langdon, C. J., Waldock, M. J. (1981). The effect of algal and artificial diets on the growth and fatty acid composition ofCrassostrea gigas spat. J. mar. biol. Ass. U.K. 61: 431–448

    Google Scholar 

  • Lehninger, A. L. (1975). Biochemistry: the molecular basis of cell structure and function. Worth Publishers, Inc., New York

    Google Scholar 

  • Marsh, A. G., Harvey, H. R., Gremare, A., Tenore, K. R. (1990). Dietary effects on oocyte yolk-composition inCapitella sp. I (Annelida: polychaeta): fatty acids and sterols. Mar. Biol. 106: 369–374

    Google Scholar 

  • Mayzaud, P., Chanut, J. P., Ackman, R. G. (1989). Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar. Ecol. Prog. Ser. 56: 189–204

    Google Scholar 

  • Morrison, W. R., Smith, L. M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J. Lipid Res. 5: 600–608

    Google Scholar 

  • Naumenko, N. V., Kostetskii, E. Y. (1987). Fatty acid composition of phosphatidylcholine and phosphatidylethanolamine from muscle tissue of marine invertebrates in various seasons of year. Zh. evolyut. Biokhim. Fiziol. 23: 16–25

    Google Scholar 

  • Owen, J. M., Adron, J. W., Sargent, J. R., Cowley, C. B. (1972). Studies on the nutrition of marine flatfish. The effect of dietary fatty acids on the tissue fatty acids of the plaicePleuronectes platessa. Mar. Biol. 13: 160–166

    Google Scholar 

  • Piretti, M. V., Zuppa, F., Pagliuca, G., Taioli, F. (1988). Investigation of the seasonal variations of fatty acid constituents in selected tissues of the bivalve molluscScapharca inaequivalvis (Bruguiere). Comp. Biochem. Physiol. 89 B: 183–187

    Google Scholar 

  • Sargent, J. R. (1976). The structure, metabolism and function of lipids in marine organisms. In: Malins, D. C., Sargent, J. R. (eds.) Biochemical and biophysical perspectives in marine biology, Vol. 3. Academic Press, New York, p. 149–212

    Google Scholar 

  • Sasaki, G. C., Capuzzo, J. M. (1984). Degradation ofArtemia lipids under storage. Comp. Biochem. Physiol. 78 B. 525–531

    Google Scholar 

  • Tinoco, J., Babcock, F., Hincenbergs, I., Medwadoswki, B., Miljanich, P. (1978). Linolenic acid deficiency: changes in fatty acid patterns in female and male rats raised on a linolienic acid-deficient diet for two generations. Lipids 13: 6–17

    Google Scholar 

  • Tinoco, J., Babcock, R., Hincenbergs, I., Medwadowski, B., Milljanich, P., Williams, M. A. (1979). Linolenic acid deficiency. Lipids 14: 166–173

    Google Scholar 

  • Waldock, M. J., Holland, D. L. (1984). Fatty acid metabolism in young oysters,Crassostrea virginica: polyunsaturated fatty acids. Lipids 19: 332–336

    Google Scholar 

  • Waldock, M. J., Nascimento, L. A. (1979). The triacylglycerol composition ofCrassostrea gigas larvae fed on different algal diets. Mar. Biol. Lett. 1: 77–86

    Google Scholar 

  • Walsh, P. J., Foster, G. D., Moon, T. W. (1983). The effect of temperature on metabolism of the American eelAnguilla rostrata (Lesueur): Compensation in the summer and torpor in the winter. Physiol. Zool. 56: 532–540

    Google Scholar 

  • Yone, Y., Fujii, M. (1975). Studies on nutrition of Red Sea Bream. XI. Effect of 3 fatty acid supplements in a corn oil diet on growth rate and feed efficiency. Bull. Jap. Soc. scient. Fish. 41: 73–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, F.L.E., Greaves, J. Metabolism of palmitic, linoleic, and linolenic acids in adult oysters,Crassostrea virginica . Mar. Biol. 110, 229–236 (1991). https://doi.org/10.1007/BF01313708

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313708

Keywords

Navigation