Skip to main content
Log in

Effect of food concentration on digestion and vacuole passage time in the heterotrichous marine ciliateFibrea salina

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Vacuole passage time (VPT) and digestion time (DT) in the heterotrichous marine ciliateFabrea salina (Henneguy) (from cultures) were measured in 1986 under different food concentrations, using epifluorescence microscopy, and employing fluorescent particles andRhodomonas lens as tracers. Both VPT and DT were unaffected by food concentrations ranging form 0 to 106 cells ml−1 and can be treated as constants (120.0 and 71.2 min, respectively). Vacuole life expectancy may be related to the ingestion-rate-determining need forde novo membrane synthesis and “old” vacuole membrane recycling which feeds new endocytotic vacuole production. Both processes are enzyme-controlled, which would explain the observations of other investigators that at least in certain ciliates digestion time is responsive to changes in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Allen, R. D. (1974). Food vacuole membrane growth with microtubule-associated membrane transport inParamecium. J. Cell Biol. 63: 904–922

    Google Scholar 

  • Allen, R. D. (1978). Membranes of ciliates: ultrastructure, biochemistry and fusion. In: Poste, G., Nicholson, G. L. (eds.) Membrane fusion. Elsevier/North Holland, Amsterdam, p. 657–763

    Google Scholar 

  • Allen, R. D., Fok, A. K. (1984a). Stages of digestive vacuoles inParamecium: membrane surface differences and location. Eur. J. Cell Biol. 35: 149–155

    Google Scholar 

  • Allen, R. D., Fok, A. K. (1984b). Retrieval of lysosomal membrane and acid phosphatase from phagolysosomes ofParamecium caudatum. J. Cell Biol. 99: 1955–1959

    Google Scholar 

  • Allen, R. D., Staehelin, L. A. (1981). Digestive system membranes: freeze-fracture evidence for differentiation and flow inParamecium. J. Cell Biol. 89: 9–20

    Google Scholar 

  • Berger, J. D., Pollock, C. (1981). Kinetics of food vacuole accumulation and loss inParamecium tetraurelia. Trans. Am microsc. Soc. 100: 120–133

    Google Scholar 

  • Capriulo, G. M. (1990). Feeding-related ecology of marine protozoa. In: Capriulo, G. M. (ed.) Ecology of marine protozoa. Oxford University Press, New York, p. 186–259

    Google Scholar 

  • Elliott, A. M., Clemmons, G. L. (1966). An ultrastructural study of ingestion and digestion inTetrahymena pyriformis. J. Protozool. 13: 311–323

    Google Scholar 

  • Fenchel, T. (1975). The quantitative importance of the benthic microfauna of an artic tundra pond. Hydrobiologia 46: 445–464

    Google Scholar 

  • Fischer-Defoy, D., Hausmann, K. (1977). Untersuchungen zur Phagocytose beiClimacostomum virens. Protistologica 13: 459–476

    Google Scholar 

  • Fok, A. K. (1983). An inhibition and kinetic study of acid phosphatase inParamecium caudatum andParamecium tetraurelia. J. Protozool. 30: 14–20

    Google Scholar 

  • Fok, A. K., Lee, Y., Allen, R. D. (1982). The correlation of digestive vacuole pH and size with the digestive cycle inParamecuim caudatum. J. Protzool. 29: 409–444

    Google Scholar 

  • Fok, A. K., Muraoka, J. H., Allen, R. D. (1984). Acid phosphatase in the digestive vacuoles and lysosomes ofParamecium caudatum: a timed study. J. Protozool. 31: 216–220

    Google Scholar 

  • Fok, A. K., Shockley, B. U. (1985). Processing of digestive vacuoles inTetrahymena and the effects of dichloroisoproterenol. J. Protozool. 32: 6–9

    Google Scholar 

  • Fok, A. K., Valin, E. L. (1983). Effects of dimethylsulfoxide (DMSO) on the digestive-lysosomal system inParamecium caudatum. Eur. J. Cell Biol. 32: 45–51

    Google Scholar 

  • Jurand, A. (1961). An electron microscope study of food vacuoles inParamecium aurelia. J. Protozool. 8: 125–130

    Google Scholar 

  • Lee, J. J., Capriulo, G. M. (1990). The ecology of marine protozoa: an overview. In: Capriulo, G. M. (ed.) Ecology of marine protozoa. Oxford University Press, New York, p. 3–45

    Google Scholar 

  • McKanna, J. (1973a). Cyclic membrane flow in the ingestive-digestive system of peritrich protozoans. 1. Vesicular fusion at the cytopharynx. J. Cell Sci. 13: 663–675

    Google Scholar 

  • McKanna, J. (1973b). Cyclic membrane flow in the ingestive-digestive system of peritrich protozoans. 2. Cup-shaped coated vesicles. J. Cell Sci. 13: 677–686

    Google Scholar 

  • McManus, G. B., Fuhrman J. A. (1986). Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol. Ocenaogr. 31: 420–426

    Google Scholar 

  • Muller, M., Rohlich P., Toro I. (1965). Studies on feeding and digestion in protozoa. 7. Ingestion of polystyrene latex articles and its early effect on acid phosphatase inParamecium micronucleatum andTetrahymena pyriformis. J. Protozool. 12: 27–34

    Google Scholar 

  • Nilsson, J. R. (1972). Further studies in vacuole formation inTetrahymena pyriformis G. L. Compt. Rend. Trav. Lab. Carlsberg 29: 83–110

    Google Scholar 

  • Nilsson, J. R. (1977). On food vacuoles inTetrahymena pyriformis GL. J. Protozool. 24: 502–507

    Google Scholar 

  • Nilsson, J. R. (1979). Phagotrophy inTetrahymena In: Levandowsky, M., Hutner, S. H. (eds.) Biochemistry and physiology of protozoa, Vol. 2. Academic Press, New York, p. 339–379

    Google Scholar 

  • Nilsson, J. R. (1987). Structural aspects of digestion ofEscherichia coli inTetrahymena. J. Protozool. 34: 1–6

    Google Scholar 

  • Nisbet, B. (1984). Nutrition and feeding strategies in protozoa. Crown Helm, London

    Google Scholar 

  • Provasoli, L. (1963). Growing marine seaweeds. Proc. 4th int. Seaweed Symp. (Biarritz, 1961) 4: 9–17 [Virville, D. de, Feldman, J. (eds.) Pergamon Press, London]

    Google Scholar 

  • Ricketts, T. R. (1979). Temporal movement of digestive vacuoles in fedTetrahymena pyriformis GL-9. Protoplasma 100: 317–322

    Google Scholar 

  • Ricketts, T. R., Rappitt, A. F. (1976). Endocytosis, digestive vacuolar movement and exocytosis on refeeding starvedTetrahymena pyriformis GL-9. Protoplasma 87: 221–236

    Google Scholar 

  • Rothstein, T. L., Blum, J. J. (1974). Lysosomal physiology inTetrahymena. III. Pharmacological studies on acid hydrolase release and the ingestion and egestion of dimethylbenzanthracene particles. J. Cell Biol. 62: 844–859

    Google Scholar 

  • Rudzinska, M. A. (1970). The mechanism of food intake inTokophrya infusionum and ultrastructural changes in food vacuoles during digestion. J. Protozool. 17: 626–641

    Google Scholar 

  • Rudzinska, M. A. (1972). Ultrastructural localization of acid phosphatase in feedingTokophrya infusionum. J. Protozool. 19: 618–629

    Google Scholar 

  • Rudzinska, M. A. (1973). Autophagy inTokophrya infusionum. In: de Puytorac, P., Grain, J. (eds.) Progress in protozoology, Proceedings of the 4th International Congress, Sept. 1973. Univ. De Clermont, Clermont, Ferrand, France, p. 354

    Google Scholar 

  • Rudzinska, M. A. (1980). Internalization of macromolecules from the medium in Suctoria. J. Cell Biol. 84: 172–183

    Google Scholar 

  • Sattler, C. A., Staehelin, L. A. (1979). Oral cavity ofTetrahymena pyriformis: a freeze fracture and high voltage electron microscopy study of the oral ribs, cytostome and forming food vacuole. J. Ultrastruct. Res. 66: 132–150

    Google Scholar 

  • Sawicka, K., Kaczanowski, A., Kaczanowska, J. (1983). Kinetics of ingestion and egestion of food vacuoles during the cell cycle ofChilodonella steini. Acta protozool. 22: 157–167

    Google Scholar 

  • Sherman, G. B., Buhse, H. E., Jr., Smith, H. E. (1982). Physiological studies on the cytopharyngeal pouch, a prey receptable in the carnivorous macrostomal form ofTetrahymena vorax. J. Protozool. 29: 360–365

    Google Scholar 

  • Sherr, B. F., Sherr, E. B., Rassoulzadegan, F. (1988). Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Appl. envirl Microbiol. 54: 1091–1095

    Google Scholar 

  • Small, E. B., Lynn, D. (1985). Phylum Ciliophora. In: Lee, J. J., Hutner, S. H., Bovee, E. C. (eds.) An illustration guide to the protozoa. Allen Press, Lawrence, Kansas

    Google Scholar 

  • Sugden, B. (1950). A study of the feeding and excretion of the ciliateCarchesium in relation to the clarification of sewage effluent. Ph. D. thesis, University of Leeds, London

    Google Scholar 

  • Taneda, K., Ohno, C. (1985). The quantitative analysis of food vacuole formation inParamecium caudatum. Mem. Fac. Sci. Kochi Univ. (Ser. D) 6: 1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capriulo, G.M., Degnan, C. Effect of food concentration on digestion and vacuole passage time in the heterotrichous marine ciliateFibrea salina . Mar. Biol. 110, 199–202 (1991). https://doi.org/10.1007/BF01313705

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313705

Keywords

Navigation