Skip to main content
Log in

Uptake of cadmium in tropical marine lamellibranchs, and effects on physiological behaviour

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The effect of cadmium introduced as inorganic salts (chloride, nitrate, sulfate, carbonate, acetate and iodide) or organic chelates (with EDTA, NTA and humic acid) on the physiological behaviour of six species of tropical lamellibranchs — arcid blood clamsAnadara granosa andA. rhombea, venerid clamsMeretrix casta andKatelysia opima, and mytilid musselsPerna viridis andP. indica, collected from various intertidal areas in southern India from 1986 to 1989 — was evaluated. Inorganic salts of Cd are reported to completely ionize upon introduction to full-strength sea water and form predominantly (97%) chloride complexes. Some inorganic Cd salts, therefore, would hardly affect physiological parameters. However, bioaccumulation of Cd was greatest upon exposure to Cd introduced as sulfate, followed by iodide, acetate, chloride, nitrate and carbonate; 96-h LC50's also varied, but in a different order, being highest for chloride (3.5µg ml−1), followed by nitrate, acetate, iodide and sulfate (1.8µg ml−1). Furthermore, Cd levels increased linearly with time of exposure and levels in medium, and were species-specific, being highest in the arcid clams, followed by the venerid clams and mytilid mussels. The presence of other metals such as Zn reduced bioaccumulation of Cd significantly (P < 0.001), but the reverse was not true. Upon exposure to Cd in the presence of Cu, on the other hand, accumulation of both metals was reduced by 15 to 20%. In the presence of organic chelators — EDTA, NTA and reduced glutathione (GSH) — Cd accumulation was significantly inhibited, by 1/2 to 1/3. Humic acid, on the other hand, had no effect. Cd levels in soft tissues were inversely related to ambient salinity in the range of 12 to 32‰. However, both Zn and Cu significantly inhibited Cd accumulation irrespective of salinity. Cd increased the rate of filtration inAnadara granosa over the first 24 h by 28%, but on prolonged exposure (96 h) that rate decreased significantly, by 50%. Zn alone and in the presence of Cd, on the contrary, initially reduced filtration activity, which subsequently increased to control levels upon continued exposure. Cu alone and in combination with Cd and Zn also significantly (P < 0.001) inhibited filtration relative to controls. This combination also progressively reduced respiratory activity with time, the maximum decrease being 80% after 96 h of exposure. Furthermore, impact of all three metals on both filtration rate and oxygen consumption was initially synergistic, but changed to antagonistic upon prolonged exposure up to 96 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Amiard-Triquet, C., Berthet, B., Metayer, C., Amiard, J. C. (1986). Contribution to the ecotoxicological study of cadmium, copper and zinc in the musselMytilus edulis. II. Experimental study. Mar. Biol. 92: 7–13

    Google Scholar 

  • Barnes, H. (1959). Apparatus and methods of oceanography. Part I. Chemical. George Allen & Co., London

    Google Scholar 

  • Bouquegneau, J. M., Noel-Lambot, F., Disteche, A. (1979). Fate of heavy metals in experimental aquatic food chains, uptake and release of Hg and Cd by some marine organisms. Role of metallothioneins. Int. Counc. Explor. Sea Comm. Meet. (Mar. envirl Qual. Comm.) 58: 85–122

    Google Scholar 

  • Brooks, R. R., Rumsby, M. G. (1967). Studies on the uptake of cadmium by the Oyster,Ostrea sinuata (L.). Aust. J. mar. Freshwat. Res. 18: 53–61

    Google Scholar 

  • Brouwer, M., Brouwer-Hoexum, T., Engel, D. W. (1984). Cadmium accumulation by the blue crab,Callinectes sapidus: involvement of haemocyanin and characterization of cadmium-binding proteins. Mar. envirl Res. 14: 71–88

    Google Scholar 

  • Bryan, G. W. (1976a). Some aspects of heavy metal tolerance in aquatic organisms. In: Lockwood, A. P. M. (ed.) Effect of pollutants on aquatic organisms. Cambridge University Press, Cambridge, p. 7–34

    Google Scholar 

  • Bryan, G. W. (1976b). Heavy metal contamination in the sea. In: Johnston, R. (ed.) Marine Pollution. Academic Press, London, p. 185–302

    Google Scholar 

  • Byczkowski, J. Z., Sorenson, R. J. (1984). Effect of metal compounds on mitochondrial functions. Sci. total Envir. 37: 133–162

    Google Scholar 

  • Christie, N. T., Costa, M. (1983). In vivo assessment of the toxicity of metal compounds. III. Effects of metals on DNA structure and function in intact cells. Biol. Trace Element Res. 5: 55–71

    Google Scholar 

  • Cossa, D. (1976). Sorption du cadmium par une population de la diatoméePhaeodactylum tricornutum en culture. Mar. Biol. 34: 163–167

    Google Scholar 

  • Crespo, S., Sala, R. (1986). Chloride cell mitochondria are target organelles in acute Zn contamination. Mar. Pollut. Bull. 17: 329–331

    Google Scholar 

  • Cunningham, P. A. (1979). The use of bivalve molluscs in heavy metal pollution research. In: Vernberg, W. B., Thurberg, F. P., Calabrese, A., Vernberg, F. J. (eds.) Marine pollution functional responses. Academic Press, London, p. 183–221

    Google Scholar 

  • Denton, G. R. W., Burdon-Jones, C. (1981). Influence of temperature and salinity on the uptake, distribution and depuration of mercury, cadmium and lead by the black-lip oysterSaccostrea echinata. Mar. Biol. 64: 317–326

    Google Scholar 

  • Dunlop, S., Chapman, G. (1981). Detoxification of zinc and cadmium by the fresh water protozoanTetrahymena pyriformis. II. Growth experiments and ultrastructural studies on sequestration of heavy metals. Envir. Res. 24: 264–274

    Google Scholar 

  • Elliott, N. G., Swain, R., Ritz, D. A. (1986). Metal interaction during accumulation by the musselMytilus edulis planulatus. Mar. Biol. 93: 395–399

    Google Scholar 

  • Fisher, N. S., James, G. F. (1982). Complexation of Cu, Zn, and Cd by metabolites excreted from marine diatomes. Mar. Chem. 11: 245–255

    Google Scholar 

  • Florence, M. T. (1986). Electrochemical approaches to trace element speciation in waters: a review. Analyst, Lond. 3: 489–505

    Google Scholar 

  • Foster, P. L., Morel, F. M. M. (1982). Reversal and cadmium toxicity in a diatom: an interaction between cadmium activity and iron. Limnol. Oceanogr. 27: 745–752

    Google Scholar 

  • George, S. G., Carpane, E., Coombs, T. L., Overnell, J., Youngson, A. (1979). Characterization of cadmium-binding proteins from musselsMytilus edulis (L.) exposed to cadmium. Biochem. biophys. Acta 580: 225–233

    Google Scholar 

  • George, S. G., Coombs, T. L. (1977). The effects of chelating agents on the uptake and accumulation of cadmium byMytilus edulis. Mar. Biol. 39: 261–268

    Google Scholar 

  • George, S. G., Pirie, B. J. S. (1980). Metabolism of zinc in the mussel,Mytilus edulis (L.): a combined ultrastructural and biochemical study. J. mar. biol. Ass. U.K. 60: 575–590

    Google Scholar 

  • George, S. G., Pirie, B. J. S., Frazier, J. M. (1983). Effects of cadmium exposure on metal-containing amoebocytes of the oysterOstrea edulis. Mar. Biol. 76: 63–66

    Google Scholar 

  • Gutknecht, J. (1983). Cadmium and thallous ion permeabilities through lipid bilayer membranes. Biochim. biophys. Acta 735: 185–188

    Google Scholar 

  • Härdstedt- Roméo, M., Gnassia-Barelli, M. (1980). Effect of complexation by natural phytoplankton exudates on the accumulation of cadmium and copper by the HaptophyceaeCricosphaera elongata. Mar. Biol. 59: 79–84

    Google Scholar 

  • Harrison, F. L. (1979). Effects of the physicochemical form of trace metals on their accumulation by bivalve molluscs. In: Jenne, A. (ed.) Chemical modeling in aqueous systems. Symp. Ser. Am. chem. Soc. 93: 611–634

    Google Scholar 

  • Hung, Y. W. (1982). Effects of temperature and chelating agents on the cadmium uptake in the American Oyster. Bull. envir. Contam. Toxic. 28: 546–551

    Google Scholar 

  • Jackim, E., Morrison, G., Steele, R. (1977). Effects of environmental factors on radiocadmium uptake by four species of marine bivalves. Mar. Biol. 40: 303–308

    Google Scholar 

  • Jenkins, K. D., Sanders, B. M. (1986). Relationships between free cadmium ion activity in seawater, cadmium accumulation and subcellular distribution and growth in polychaetes. Envir. Hlth Perspectives 65: 205–210

    Google Scholar 

  • John, B. S. (1968). Promising anti-pollutant: chelating agent NTA protects fish from copper and zinc. Nature, Lond. 220: 1345–1346

    Google Scholar 

  • Kinne, O. (1970). Temperature:Animals:Invertebrates. In: Kinne, O. (ed.) Marine ecology, Vol. I, Environmental factors, Part 1. Wiley Interscience, London, p. 407–514

    Google Scholar 

  • Kinne, O. (1971). Salinity:Animals:Invertebrates. In: Kinne, O. (ed.) Marine ecology, Vol. II, Physiological mechanisms, Part 2. Wiley Interscience, London, p. 821–995

    Google Scholar 

  • Langston, W. J., Zhou, M. (1987a). Cadmium accumulation, distribution and metabolism in the gastropodLittorina littorina: the role of metal binding proteins. J. mar. biol. Ass. U.K. 67: 585–601

    Google Scholar 

  • Langston, W. J., Zhou, M. (1987b). Cadmium accumulation, distribution and elimination in the bivalveMacoma balthica: neither metallothionein nor metallothionein-like proteins are involved. Mar. envirl Res. 21: 225–237

    Google Scholar 

  • Mantoura, R. F. C., Dickson, A., Riley, J. P. (1978). The complexation of metals with humic materials in natural waters. Estuar. cstl mar. Sci. 6: 387–408

    Google Scholar 

  • Marshall, A. T., Talbot, V. (1979). Accumulation of cadmium and lead in the gills ofMytilus edulis: X-ray microanalysis and chemical analysis. Chem. biol. Interactions 27: 111–123

    Google Scholar 

  • Martincić, D., Nürnberg, H. W., Stoeppler, M., Branica, M. (1984). Bioaccumulation of heavy metals by bivalves from Lim Fjord (North Adriatic Sea). Mar. Biol. 81: 177–188

    Google Scholar 

  • McLeese, D. W., Ray, S. (1984). Uptake and excretion of cadmium, CdEDTA, and zinc byMacoma balthica. Bull. envir. Contam. Toxic. 32: 85–92

    Google Scholar 

  • McLeese, D. W., Ray, S. (1986). Toxicity of CdCl2, CdEDTA, CuCl2 and CuEDTA to marine invertebrates. Bull. envir. Contam. Toxic. 36: 749–755

    Google Scholar 

  • Moulder, S. M. (1980). Combined effect of the chlorides of mercury and copper in sea water on the euryhaline amphipodGammarus duebeni. Mar. Biol. 59: 193–200

    Google Scholar 

  • Morel, F. M. M. (1983). Principles of aquatic chemistry. Wiley Interscience, London

    Google Scholar 

  • Negilski, D. S., Ahsanullah, M., Mobley, M. C. (1981). Toxicity of zinc, cadmium and copper to the shrimpCallianassa australiensis. II. Effects of paired and triad combinations of metals. Mar. Biol. 64: 305–309

    Google Scholar 

  • Nelson, A., Donkin, P. (1985). Processes of bioaccumulation: the importance of chemical speciation. Mar. Pollut. Bull. 16: 164–169

    Google Scholar 

  • Nickless, G., Stenner, R., Terrille, N. (1972). Distribution of cadmium, lead and zinc in the Bristol channel. Mar. Pollut. Bull. 3: 188–190

    Google Scholar 

  • Nugegoda, D., Rainbow, P. S. (1988). Effect of a chelating agent (EDTA) on zinc uptake and regulation byPalaemon elegans (Crustacea: Decapoda). J. mar. biol. Ass. U.K. 68: 24–40

    Google Scholar 

  • O'Hara, J. (1973). The influence of temperature and salinity on the toxicity of cadmium to the fiddler crab,Uca pugilator. Fish. Bull. U.S. 71: 149–153

    Google Scholar 

  • Patel, B., Balani, M. C., Patel, S. (1985). Sponge ‘sentinel’ of heavy metals. Sci. total Envir. 41: 143–152

    Google Scholar 

  • Patel, B., Balani, M. C., Patel, S., Panday, V. K., Soman, S. D. (1975). Impact of thermal and radioactive effluents on a tropical nearshore ecosystem. In: Proc. symp. combined effects of radioactive chemical and thermal releases to the environment. Int. atom. Energy Ag. tech. Rep. Ser., Vienna, p. 17–34

    Google Scholar 

  • Patel, B., Chandy, J. P., Patel, S. (1988). Do selenium and glutathione inhibit the toxic effects of mercury in marine lamellibranchs? Sci. total Envir. 76: 147–165

    Google Scholar 

  • Patel, B., Eapen, J. T. (1989). Biochemical evaluation of naphthalene intoxication in the tropical arcid blood clamAnadara granosa. Mar. Biol. 103: 203–209

    Google Scholar 

  • Peden, J. D., Crothers, J. M., Waterfall, C. E., Beasley, J. (1973). Heavy metals in Somerset marine organisms. Mar. Pollut. Bull. 4: 7–9

    Google Scholar 

  • Rainbow, P. S., Scott, A. G., Wiggans, E. A., Jackson, R. W. (1980). Effects of chelating agents on the accumulation of cadmium by the barnacleSemibalanus balanoides and complexation of soluble Cd, Zn, and Cu. Mar. Ecol. Prog. Ser. 2: 143–152

    Google Scholar 

  • Ray, S. (1984). Bioaccumulation of cadmium in marine organisms. A Review. Experientia 40: 14–23

    Google Scholar 

  • Ray, S., McLeese, D. W., Pezzack, D. (1979). Chelation and interelemental effects on the bioaccumulation of heavy metal by marine invertebrates. In: Proceedings of International Conference on Management and Control of Heavy Metals in the Environment. Council of European Communities and World Health Organisation Consultants, London, p. 35–38

    Google Scholar 

  • Ray, S., McLeese, D. W., Waiwood, B. A., Pezzack, D. (1980). The disposition of cadmium and zinc inPandalus montagui. Archs envir. Contam. Toxic. 9: 675–681

    Google Scholar 

  • Robert, F. C., David, F. B. (1986). Effect of pH on the toxicity of Cd, Cu and Zn to steelhead Trout (Salmo gairdneri). Can. J. Fish. aquat. Sciences 43: 7–9

    Google Scholar 

  • Robinson, W. E., Ryan, D. K. (1988). Transport of cadmium and other metals in the blood of the bivalve molluscMercenaria mercenaria. Mar. Biol. 97: 101–109

    Google Scholar 

  • Sanders, B. M., Jenkins, K. D., Sunda, W. G., Costlow, J. D. (1983). Free cupric ion activity in sea water: effects of metallothionein and growth in crab larvae. Science, N.Y. 222: 53–55

    Google Scholar 

  • Scholz, N. (1980). Accumulation, loss and molecular distribution of cadmium inMytilus edulis. Helgoländer wiss. Meeresunters. 33: 68–78

    Google Scholar 

  • Scoff, D. M., Major, C. W. (1972). The effect of copper II on survival, respiration, and heart rate in the blue musselsMytilus edulis. Biol. Bull. mar. biol. Lab., Woods Hole 143: 679–688

    Google Scholar 

  • Simkiss, K. (1983). Lipid solubility of heavy metals in saline solutions. J. mar. biol. Ass. U.K. 63: 1–7

    Google Scholar 

  • Sloff, W., de Zwart, D., Marquenic, J. M. (1983). Detection limits of a biological monitoring system for chemical water pollution based upon mussel activity. Bull. envir. Contam. Toxic. 30: 400–405

    Google Scholar 

  • Smith, J. R. (1985). Copper exposure and ciliary function in gill tissue ofMytilus californianus. Bull. envir. Contam. Toxic. 35: 556–563

    Google Scholar 

  • Sunda, W. G., Engel, D. W., Thuotte, R. M. (1978). Effects of chemical speciation on toxicity of cadmium to grass shrimpPalaemonetes pugio: importance of free cadmium ion. Envir. Sci. Technol. 12: 409–413

    Google Scholar 

  • Thurberg, F. P., Calabrese, A., Gould, E., Greig, R. A., Dawson, M. A., Tucker, R. K. (1977). Responses on the lobster,Homarus americanus, to sublethal levels of cadmium and mercury. In: Vernberg, F. J., Calabrese, A., Thurberg, F. P., Vernberg, W. B. (eds.) Physiological responses of marine biota to pollutants. Academic Press, New York, p. 185–197

    Google Scholar 

  • Thurberg, F. P., Dawson, M. A., Collier, R. S. (1973). Effects of copper and cadmium on osmoregulation and oxygen consumption in two species of estuarine crabs. Mar. Biol. 23: 171–175

    Google Scholar 

  • Viarengo, A., Zanicchi, G., Moore, M. N., Orunescu, M. (1981). Accumulation and detoxification of copper by the musselsMytilus galloprovincialis Lan.: a study of the subcellular distribution in the digestive gland cell. Aquat. Toxic. 1: 147–157

    Google Scholar 

  • Webb, J., David, J. M., Victor, T. (1985). Identification of ferritin as a major high molecular weight Zinc-binding protein in the tropical rock oyster,Saccostrea cuccullata. Archs envir. Contam. Toxic. 14: 403–407

    Google Scholar 

  • Westernhagen, H. V., Rosenthal, H., Sperling, K. R. (1974). Combined effects of cadmium and salinity on development and survival of herring eggs. Helogländer wiss. Meeresunters. 26: 416–433

    Google Scholar 

  • Whitley, L. S., Sikora, R. A. (1970). The effects of three common pollutants on the respiration rate of tubificid worms. J. Wat. Pollut. Control Fed. 5: 42

    Google Scholar 

  • Wright, D. A. (1977). The effect of salinity on cadmium uptake by the tissues of the shore crabCarcinus maenas. J. exp. Biol. 67: 137–146

    Google Scholar 

  • Zamuda, C. D., Sunda, W. G. (1982). Bioavailability of dissolved copper to the American oysterCrassostrea virginica. I. Importance of chemical speciation. Mar. Biol. 66: 77–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Deceased. Please send all correspondence and requests for reprints to Dr. S. Patel at the same address

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, B., Anthony, K. Uptake of cadmium in tropical marine lamellibranchs, and effects on physiological behaviour. Mar. Biol. 108, 457–470 (1991). https://doi.org/10.1007/BF01313656

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313656

Keywords

Navigation