Skip to main content
Log in

Species-specific sedimentation and sinking velocities of diatoms

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sedimentation rates were determined for various diatom species, and both average and maximum sinking velocities of sedimenting diatoms were calculated during a spring bloom investigation in the central Baltic Sea in 1986. Up to 25 and 50% of theChaetoceros spp. andThalassiosira levanderi populations, respectively, sedimented daily. Daily sedimentation rates of other diatoms, dinoflagellates andMesodinium rubrum, however, were less than 1% of their respective standing stocks. TheT. levanderi population was divided into two subpopulations: while one was sinking, the second was actively dividing (recognizable by paired-cell stages) with a specific growth rate of >0.2 to 0.3 d−1. These paired cells were never found in sediment trap samples. The average sinking velocity ofChaetoceros spp. was 15 to 30 m d−1; that ofT. levanderi was higher. The maximum sinking velocity of cells was at least 70 m d−1. According to these observations, the formation of aggregates (which enhances sinking velocity), and their sedimentation, represent a highly selective process. This indicates that diatom aggregates do not act as roving filters, sweeping the water clear while sinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alldredge, A. L., Gotschalk, C. C. (1988). In situ settling behaviour of marine snow. Limnol. Oceanogr. 33: 339–351

    Google Scholar 

  • Alldredge, A. L., Gotschalk, C. C. (1989). Direct observation of the mass flocculation of diatom blooms: characteristics, settling velocity and formation of diatom aggregates. Deep-Sea Res. 26: 159–171

    Google Scholar 

  • Alldredge, A. L., Silver, M. (1988). Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41–82

    Google Scholar 

  • Asper, L. V. (1987). Measuring the flux and sinking speed of marine snow aggregates. Deep-Sea Res. 34: 1–17

    Google Scholar 

  • Bathmann, U. (1984). Struktur und Bedeutung des Zooplanktons beim Übergang von der Frühjahrs- zur Sommerphase in der zentralen Ostsee. Masters thesis, University of Kiel, Germany

    Google Scholar 

  • Bienfang, P. K. (1980). Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Mar. Biol. 61: 69–77

    Google Scholar 

  • Bienfang, P. K., Harrison, P. J., Quarmby, L. M. (1982). Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms. Mar. Biol. 67: 295–302

    Google Scholar 

  • Bienfang, P. K., Szyper, J. P., Laws, E. (1983). Sinking rate and pigment responses to light-limitation of a marine diatom: implications to dynamics of chlorophyll maximum layers. Oceanol. Acta 6: 55–62

    Google Scholar 

  • Bodungen, B. von, Bröckel, K. von, Smetacek, V., Zeitzschel, B. (1981). Growth and sedimentation of the phytoplankton spring bloom in the Bornholm Sea (Baltic Sea). Kieler Meeresforsch. (Sonderh.) 5: 49–60

    Google Scholar 

  • Culver, M. E., Smith, W. O. Jr. (1989). Effects of environmental variation in sinking rates of marine phytoplankton. J. Phycol. 25: 262–270

    Google Scholar 

  • Derenbach, J. (1969). Zur Homogenisation des Phytoplanktons für die Chlorophyllbestimmung. Kieler Meeresforsch. 25: 166–171

    Google Scholar 

  • Deuser, W. G., Brewer, P. G., Jickells, T. D., Commea, R. F. (1983). Biological control of the removal of abiogenic particles from the surface ocean. Science, N.Y. 219: 388–391

    Google Scholar 

  • Deutsches Hydrographisches Institut (1987). Die Auswirkungen des Kernkraftwerkunfalles von Tschernobyl auf Nord- und Ostsee. Meeresk. Beob. Ergebn. dt. hydrogr. Inst. 62: 1–23

    Google Scholar 

  • Dybern, B. I., Hansen, H. P. (1989). Baltic Sea Patchiness Experiment. PEX-86. Part I. General Report. Vols. I and II. Co-op. Res. Rep. int. Counc. Explor. Sea No. 163, Copenhagen

  • Gotschalk, C. C., Alldredge, A. L. (1989). Enhanced primary production and nutrient regeneration within aggregated marine diatoms. Mar. Biol. 103: 119–129

    Google Scholar 

  • Graßhoff, K. (1976). Methods on seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Hargrave, B. T., Burns, N. M. (1979). Assessment of sediment trap collection efficiency. Limnol. Oceanogr. 24: 1134–1136

    Google Scholar 

  • Hernroth, L., Ackefors, H. (1977). The zooplankton of the Baltic proper — a longterm investigation of the fauna, its biology and ecology. Rep. Fish. Bd. Sweden Inst. mar. Res. Lysekil 2: 1–60

    Google Scholar 

  • Honjo, S. (1982). Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science, N.Y. 218: 883–884

    Google Scholar 

  • Jackson, G. A. (1990). A model of the formation of marine algal flocs by physical coagulation processes. Deep-Sea Res. 37: 1197–1211

    Google Scholar 

  • Johnson, T. O., Smith, W. O. Jr. (1986). Sinking rates of phytoplankton assemblages in the Weddell Sea marginal ice zone. Mar. Ecol. Prog. Ser. 33: 131–137

    Google Scholar 

  • Kahru, M., Leppänen, J.-M., Nömmann, S., Passow, U., Postal, L., Schulz, S. (1990). Spatio-temporal mosaic of the phytoplankton spring bloom in the open Baltic Sea in 1986. Mar. Ecol. Prog. Ser. 66: 301–309

    Google Scholar 

  • Kahru, M., Nömmann, S. (1990). The phytoplankton spring bloom in the Baltic Sea in 1985, 1986: multitude of spatio-temporal scales. Contin. Shelf Res. 10: 329–354

    Google Scholar 

  • Kranck, K., Milligan, T. (1988). Macroflocs from diatoms: in situ photography of particles in Bedford Basin, Nova Scotia. Mar. Ecol. Prog. Ser. 44: 183–188

    Google Scholar 

  • Leppänen, J. M. (1988). Carbon and nitrogen cycles during the vernal growth period in the open northern Baltic Proper. Dissertation Finnish Institute of Marine Research, Helsinki

    Google Scholar 

  • Lindahl, O. (1977a). Studies on the production of phytoplankton and zooplankton in the Baltic in 1975. Meddn Havsfiskelab. Lysekil

    Google Scholar 

  • Lindahl, O. (1977b). Studies on the production of phytoplankton and zooplankton in the Baltic in 1976, and a summary of results from 1973–1976. Meddn Havsfiskelab. Lysekil

    Google Scholar 

  • Lorenzen, C. J., Welschmeyler, N. A., Copping, A. E., Verret, M. (1983). Sinking rates of organic particles. Limnol. Oceanogr. 28: 766–769

    Google Scholar 

  • Passow, U. (1990). Vertikalverteilung und Sedimentation von Phytoplanktonarten in der mittleren Ostsee während des Frühjahres 1986. Ber. Inst. MeeresKde Kiel 192: 1–203

    Google Scholar 

  • Reynold, C. S. (1976). Sinking movements of phytoplankton indicated by a simple trapping method. II Vertical activity ranges in a stratified lake. Br. phycol. J. 11: 293–303

    Google Scholar 

  • Riebesell, U. (1989). Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom. Mar. Ecol. Prog. Ser. 54: 109–119

    Google Scholar 

  • Schulz, S., Breul, G., Irmisch, A., Siegel, H., Kell, V. (1984). Results of ecological investigations during the spring bloom in the Arkona Sea. Ophelia (Suppl.) 3: 213–219

    Google Scholar 

  • Schulz, S., Kaiser, W., Breul, G. (1978). The annual course of some biological and chemical parameters at two stations in the Arkona and Bornholm Sea in 1975 and 1976. Kieler Meeresforsch. (Sonderh.) 4: 154–160

    Google Scholar 

  • Shanks, A. L., Trent, J. T. (1980). Marine snow: sinking rates and potential role in vertical flux. Deep-Sea Res. 27: 137–143

    Google Scholar 

  • Silver, M., Alldredge, A. (1981). Bathypelagic marine snow: deepsea algal and detrital community. J. mar. Res. 39: 501–530

    Google Scholar 

  • Smayda, T. J. (1971). Normal and accelerated sinking of phytoplankton in the sea. Mar. Geol. 11: 105–122

    Google Scholar 

  • Smetacek, V. S. (1980). Annual cycle of sedimentation in relation to plankton ecology in Western Kiel Bight. Ophelia (Suppl.) 1: 65–76

    Google Scholar 

  • Smetacek, V. S. (1985). Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar. Biol. 84: 239–251

    Google Scholar 

  • Smetacek, V. S., Bröckel, K. von, Zeitzschel, B., Zenk, W. (1978). Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrolographical regime. Mar. Biol. 47: 211–226

    Google Scholar 

  • Takahashi, K. (1986). Seasonal fluxes of pelagic diatoms in the subarctic Pacific, 1982–1983. Deep-Sea Res. 33: 1225–1251

    Google Scholar 

  • Utermöhl, H. (1931). Über das umgekehrte Mikroskop. Int. Verein theor. angew. Limnol. 5: 567–596

    Google Scholar 

  • Utermöhl, U. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Verein. Limnol. 9: 1–38

    Google Scholar 

  • Wells, G. T., Shanks, A. L. (1987). Observations and geologic significance of marine snow in a shallow-water, partially enclosed marine embayment. J. geophys. Res. 12: 185–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passow, U. Species-specific sedimentation and sinking velocities of diatoms. Mar. Biol. 108, 449–455 (1991). https://doi.org/10.1007/BF01313655

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313655

Keywords

Navigation