Skip to main content
Log in

Respiration, photosynthesis and carbon metabolism in planktonic ciliates

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Release of14C-labelled carbon dioxide from uniformly labelled cells was used to measure respiration by individual ciliates in 2-h incubations in 1989 and 1990. In a strictly heterotrophic ciliate,Strobilidium spiralis (Leegaard, 1915), release of labelled carbon dioxide was equivalent to ca. 2.8% of cell C h−1 at 20°C, and there was no difference between rates in the dark and light. In the chloroplast-retaining ciliatesLaboea strobila Lohmann, 1908,Strombidium conicum (Lohmann, 1908) Wulff, 1919 andStrombidium capitatum (Leegaard, 1915) Kahl, 1932, release of labelled carbon dioxide was less in the light than in the dark in experiments done at 15°C. InL. strobila release of radiolabel as carbon dioxide was equivalent to ca. 2.4% of cell C h−1 in the dark but ca. 1% at 50µE m−2 s−1, an irradiance limiting to photosynthesis. InS. conicum release of radiolabel as carbon dioxide was equivalent to ca. 4.4% of cell C h−1 in the dark, but at an irradiance saturating to photosynthesis (250 to 300µE m−2 s−1) there was no detectable release of labelled carbon dioxide. InS. capitatum release of radiolabel as carbon dioxide was equivalent to ca. 4.3% of cell C h−1 in the dark but at an irradiance saturating to photosynthesis was ca. 2.4% of cell C h−1. These data, combined with data from photosynthetic uptake experiments, indicate that14C uptake underestimates the total benefit of photosynthesis by 50% or more in chloroplastretaining ciliates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Beardall, J., Raven, J. A. (1990). Pathways and mechanisms of respiration in microalgae. Mar. microb. Fd Webs 4: 7–30

    Google Scholar 

  • Blackbourn, D. J., Taylor, F. J. R., Blackbourn J. (1973). Foreign organelle retention by ciliates. J. Protozool. 20: 286–288

    Google Scholar 

  • Caron, D. A., Goldman, J. C., Fenchel, T. (1990). Protozoan respiration and metabolism. In: Capriulo, G. M. (ed.) Ecology of Protozoa. Oxford Univ. Press, New York, p. 307–322

    Google Scholar 

  • Dodge, J. D. (1979). The phytoflagellates: fine structure and phylogeny. In: Levandowsky, M., Hutner, S. H. (eds.) Biochemistry and physiology of Protozoa, 2nd edn., Vol. 1. Academic Press, New York, p. 7–47

    Google Scholar 

  • Fenchel, T. (1987). Ecology of Protozoa. Science Tech Publishers, Madison, Wisconsin

    Google Scholar 

  • Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith, W. L., Chanley, M. H. (eds.) Culture of marine invertebrate animals. Plenum Publishing Co., New York, p. 29–60

    Google Scholar 

  • Ikeda, T. (1979). Respiration rates of copepod larvae and a ciliate from a tropical sea. J. oceanogr. Soc. Japan 35: 1–8

    Google Scholar 

  • Jonsson, P. R. (1987). Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina). Mar. microb. Fd Webs 2: 55–68

    Google Scholar 

  • Kawakami, R., Ayukai, T., Taniguchi, A. (1985). A preliminary report on respiration rates of two tintinnid species (Ciliata). Bull. Plankton Soc. Japan 32: 171–172

    Google Scholar 

  • Klekowski, R. Z. (1981). Size dependence of metabolism in protozoans. Verh. int. Verein. Limnol. 21: 1498–1502

    Google Scholar 

  • Laval-Peuto, M., Rassoulzadegan, F. (1988). Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159: 99–110

    Google Scholar 

  • Laval-Peuto, M., Salvano, P., Gayol, P., Greuet, C. (1986). Mixotrophy in marine planktonic ciliates: Ultrastructural study ofTontonia appendiculariformis (Ciliophora, Oligotrichina). Mar. microb. Fd Webs 1: 81–104

    Google Scholar 

  • Manahan, D. T. (1983). The uptake and metabolism of dissolved amino acids by bivalve larvae. Biol. Bull. mar. biol. Lab., Woods Hole 164: 236–250

    Google Scholar 

  • Prézelin, B. B., Putt, M., Glover, H. E. (1986). Diurnal patterns in photosynthetic capacity and depth-dependent photosynthesisirradiance relationships inSynnechococcus spp. and larger phytoplankton in three water masses in the Northwest Atlantic Ocean. Mar. Biol. 91: 205–217

    Google Scholar 

  • Putt, M. (1990). Metabolism of photosynthate in the chloroplast-retaining ciliateLaboea strobila. Mar. Ecol. Prog. Ser. 60: 271–282

    Google Scholar 

  • Putt, M. (in press). Abundance, chlorophyll content and photosynthetic rates of ciliates in the Nordic Seas during summer. Deep-Sea Res.

  • Putt, M., Stoecker, D. K. (1989). An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103

    Google Scholar 

  • Rogerson, A., Finlay, B. J., Berninger, U.-G. (1989). Sequestered chloroplasts in the freshwater ciliateStrombidium viride (Ciliophora: Oligotrichida). Trans. Am. microsc. Soc. 108: 117–126

    Google Scholar 

  • Schmidt-Nielsen, K. (1975). Animal physiology. Cambridge University Press, London

    Google Scholar 

  • Stoecker, D. K. (1991). Mixotrophy in marine planktonic ciliates: physiological and ecological aspects of plastid-retention by oligotrichs. In: Reid, P. C., Turley, C. M., Burkill, P. H. (eds.) Protozoa and their role in marine processes. NATO ASI Ecological Series, Vol. 25. Springer-Verlag, New York, p. 161–179

    Google Scholar 

  • Stoecker, D. K., Michaels, A. E., Davis, L. H. (1987). Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature, Lond. 326: 790–792

    Google Scholar 

  • Stoecker, D. K., Silver, M. W. (1987). Chloroplast retention by marine planktonic ciliates. Endocytobiology III. Ann. N.Y. Acad. Sci. 503: 562–565

    Google Scholar 

  • Stoecker, D. K., Silver, M. W., Michaels, A. E., Davis, L. H. (1988). Obligate mixotrophy inLaboea strobila, a ciliate which retains chloroplasts. Mar. Biol. 99: 415–423

    Google Scholar 

  • Stoecker, D. K., Silver, M. W., Michaels, A. E., Davis, L. H. (1988/1989). Enslavement of algal chloroplasts by fourStrombidium spp. (Ciliophora, Oligotrichida). Mar. microb. Fd Webs 3: 79–100

    Google Scholar 

  • Stoecker, D. K., Taniguchi, A., Michaels, A. E. (1989). Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50: 241–254

    Google Scholar 

  • Turpin, D. A., Elrifi, I. R., Birch, D. G., Weger, H.G., Holmes, J. J. (1988). Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can. J. Bot. 66: 2083–2097

    Google Scholar 

  • Weger, H. G., Herzig, R., Falkowski, P. G., Turpin, D. H. (1989). Respiratory losses in the light in a marine diatom: measurements by short-term mass spectrometry. Limnol. Oceanogr. 34: 1153–1161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Contribution no. 7510 from the Woods Hole Oceanographic Institution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoecker, D.K., Michaels, A.E. Respiration, photosynthesis and carbon metabolism in planktonic ciliates. Mar. Biol. 108, 441–447 (1991). https://doi.org/10.1007/BF01313654

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313654

Keywords

Navigation