Skip to main content
Log in

A genetic analysis of the pea crabs (Decapoda: Pinnotheridae) of New Zealand

II. Patterns and intensity of spatial population structure inPinnotheres atrinicola

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seven populations of the pea crabPinnotheres atrinicola Page were sampled from around the North Island of New Zealand from February to October 1987, and individuals were scored at 23 presumptive enzymatic loci. For a brachyuran crab,P. atrinicola revealed high levels of polymorphism and heterozygosity. Of the loci scored, phosphoglucose isomerase (Gpi) and phosphoglucomutase (Pgm) were distinguished by high variability (\(\bar H\)=0.602 and 0.526, respectively). A clinal variation in electromorph frequency was evident at several loci, and atGpi in particular. Statistical analyses revealed that, despite relatively small genetic distance separation, a high degree of structuring was present between the geographic populations. The degree of population subdivision observed in this study is atypical of brachyuran crabs. It is suggested that the genetic differentiation observed between pea crab populations is maintained by life-history attributes and current movements which restrict gene flow between populations and, to some extent, by random genetic drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Atkins, D. (1955). The post-embryonic development of BritishPinnotheres (Crustacea). Proc. zool. Soc. Lond. 124: 687–715

    Google Scholar 

  • Avise, J. C. (1975). Systematic value of electrophoretic data. Syst. Zool. 23: 465–481

    Google Scholar 

  • Ayala, F. J. (ed.) (1976). Molecular evolution. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Bell, J. L. (1984). Changing residence: dynamics of the symbiotic relationship betweenDissodactylus mellitae (Rathbun) (Pinnotheridae) andMellita quinquiesperforata (Leske) (Echinodermata). J. exp. mar. Biol. Ecol. 82: 101–115

    Google Scholar 

  • Bulnheim, H.-P., Scholl, A. (1986). Genetic differentiation between populations ofTalitrus saltator andTalorchestia deshayesii (Crustacea: Amphipoda) from coastal areas of the northwestern European continent. Mar. Biol. 92: 525–536

    Google Scholar 

  • Burton, R. S. (1983). Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 4: 193–206

    Google Scholar 

  • Burton, R. S., Feldman, M. W., Curtsinger, J. W. (1979). Population genetics ofTigriopus californicus (Copepoda: Harpacticoida) I. Population structure along the central California coast. Mar. Ecol. 1: 29–39

    Google Scholar 

  • Christensen, A. M., McDermott, J. J. (1958). Life history and biology of the oyster crab,Pinnotheres ostreum Say. Biol. Bull. mar. biol. Lab., Woods Hole 114: 146–179

    Google Scholar 

  • Corbin, K. W. (1977). Phosphoglucose isomerase polymorphism and natural selection in the sand crab,Emerita talpoida. Evolution 31: 331–440

    Google Scholar 

  • Crisp, J. D. (1978). Genetic consequences of different reproductive strategies in marine invertebrates. In: Battaglia, B., Beardmore, J. A. (eds.) Marine organisms: genetics, ecology and evolution. Plenum Press, New York, p. 257–273

    Google Scholar 

  • Endler, J. A. (1977). Geographic variation, speciation and clines. Princeton University Press, Princeton

    Google Scholar 

  • Gillespie, J. H., Langley, C. H. (1974). A general model to account for enzyme variation in natural populations. Genetics, Austin, Tex 76: 837–884

    Google Scholar 

  • Gooch, J. L., Smith, B. S., Knupp, D. (1972). Regional survey of gene frequencies in the mud snailNassarius obsoletus. Biol. Bull. mar. biol. Lab., Woods Hole 142: 36–48

    Google Scholar 

  • Goodbody, I. (1960). Abbreviated development in a pinnotherid crab. Nature, Lond. 185: 704–705

    Google Scholar 

  • Hartl, D. L. (1980). Principles of population genetics. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Hedgecock, D., Tracey, M. L., Nelson, K. (1982). Genetics. In: Abele, L. G. (ed.) The biology of Crustacea. Vol. 2. Embryology, morphology and genetics. Academic Press, New York, p. 283–403

    Google Scholar 

  • Hilbish, T. J., Deaton, L. E., Koehn, R. K. (1982). Effect of an allozyme polymorphism on regulation of cell volume. Nature, Lond. 298: 688–689

    Google Scholar 

  • Hillis, D. M. (1987). Molecular versus morphological approaches to systematics. A. Rev. Ecol. Syst. 18: 23–42

    Google Scholar 

  • Johnson, G. B. (1976). Genetic polymorphism and enzyme function. In: Ayala, F. J. (ed.) Molecular evolution. Sinauer, Sunderland, Mass., p. 46–59

    Google Scholar 

  • Kimura, M. (1979). The neutral theory of molecular evolution and polymorphism. Scient. Am. 241: 98–126

    Google Scholar 

  • Koehn, R. K. (1970). Functional and evolutionary dynamics of polymorphic esterases in catostomid fishes. Trans. Am. Fish. Soc. 1: 219–228

    Google Scholar 

  • Koehn, R. K. (1978). Physiology and biochemistry of enzyme variation: the interface of ecology and population genetics. In: Brussard, P. (ed.) Ecological genetics: the interface. Springer, New York, p. 51–72

    Google Scholar 

  • Koehn, R. K., Eanes, W. F. (1978). Molecular structure and protein variation within and among populations. Evolutionary Biol. 11: 39–100

    Google Scholar 

  • Koehn, R. K., Milkman, R., Mitton, J. B. (1976). Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue musselMytilus edulis. Evolution 30: 2–32

    Google Scholar 

  • Lakovaara, S., Saura, A., Lankinen, P., Pohjola, L., Lokki, J. (1976). The use of isoenzymes in tracing evolution and in classifying Drosophilidae. Zoologica Scr. 5: 173–179

    Google Scholar 

  • Levene, H. (1949). On a matching problem arising in genetics. Ann. math. Statist. 20: 91–94

    Google Scholar 

  • Miles, S. J. (1976). Taxonomic significance of assortative mating in a mixed field population ofCulex pipiens australicus, C.p. quinquefasciatus andC. globocoxitus. Syst. Ent., Lond. 1: 263–270

    Google Scholar 

  • Nei, M. (1975). Molecular population genetics and evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex. 89: 583–590

    Google Scholar 

  • Nelson, K., Hedgecock, D. (1980). Enzyme polymorphism and adaptive strategy in the decapod Crustacea. Am. Nat. 116: 238–280

    Google Scholar 

  • Nevo, E. (1978). Genetic variation in natural populations: patterns and theory. Theor. Popul. Biol. 13: 121–177

    Google Scholar 

  • Nevo, E. (1988). Genetic diversity in nature. Patterns and theory. Evolutionary Biol. 23: 217–246

    Google Scholar 

  • Nevo, E., Barr, Z. (1976). Natural selection of genetic polymorphisms along climatic gradients. In: Karlin, S., Nevo, E. (eds.) Population genetics and ecology. Academic Press, London, p. 159–184

    Google Scholar 

  • Nevo, E., Beiles, A., Ben Shlomo, R. (1984). The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Lecture Notes Biomaths 53: 13–212

    Google Scholar 

  • Page, R. D. M. (1983). Description of a new species ofPinnotheres, and a redescription ofPinnotheres novaezelandiae (Brachyura: Pinnotheridae). N. Z. Jl Zool. 10: 151–162

    Google Scholar 

  • Page, R. D. M. (1984). Systematics of the pea crabs (genusPinnotheres) of New Zealand (Brachyura: Pinnotheridae). Unpublished M.Sc. thesis. University of Auckland, New Zealand

    Google Scholar 

  • Pearce, J. B. (1962). Adaptation in symbiotic crabs of the family Pinnotheridae. Biologist 45: 11–15

    Google Scholar 

  • Powers, D. A., Powers, D. (1975). Predicting gene frequencies in natural populations: a testable hypothesis. In: Markert, C. L. (ed.) Isozymes. Vol. 4. Academic Press, London, p. 63–84

    Google Scholar 

  • Saelzer, H. E., Hapette, A. M. (1986). Larval development ofPinnotheres politus (Smith, 1870) (Brachyura, Pinnotheridae) under laboratory conditions. Gayana Zool. (Concepción, Chile) 50: 63–79

    Google Scholar 

  • Salmon, M., Ferris, S. D., Johnson, D., Hyatt, G., Whitt, G. S. (1979). Behavioural and biochemical evidence for species distinctiveness in the fiddler crabs,Uca speciosa andU. spinicarpa. Evolution 33: 182–191

    Google Scholar 

  • Schopf, T. J. M. (1974). Survey of genetic differentiation in a coastal zone invertebrate: the ectoproctSchizoporella errata. Biol. Bull. mar. biol. Lab., Woods Hole 146: 78–87

    Google Scholar 

  • Scott, M. S. (1961). A review of the New Zealand Pinnotheridae. Trans. R. Soc. N.Z. 1: 301–309

    Google Scholar 

  • Selander, R. K., Ochman, H. (1983). The genetic structure of populations as illustrated by molluscs. In: Isozymes: current topics in biological and medical research. Vol. 10. Genetics and evolution. Liss Inc., New York, p. 93–123

    Google Scholar 

  • Smith, P. J. (1988). Biochemical genetic variation in the green-lipped musselPerna canaliculus around New Zealand and possible implications for mussel farming. N.Z. Jl mar. Freshwat. Res. 22: 85–90

    Google Scholar 

  • Smith, P. J., Francis, R. I. C. C., Paul, L. J. (1978). Genetic variation and population structure in the New Zealand snapper. N.Z. Jl mar. Freshwat. Res. 12: 343–350

    Google Scholar 

  • Smith, P. J., MacArthur, C. J:, Michael, K. P. (1989). Regional variation in electromorph frequencies in the tuatua,Paphies subtriangulata, around New Zealand. N.Z. Jl mar. Freshwat. Res. 23: 27–33

    Google Scholar 

  • Stevens, P. M. (1990a). A genetic analysis of the pea crabs (Decapoda: Pinnotheridae) of New Zealand. I. patterns of spatial and host-associated structuring inPinnotheres novaezelandiae Filhol. J. exp. mar. Biol. Ecol. 141: 195–212

    Google Scholar 

  • Stevens, P. M. (1990b). Molecular divergence in pea crabs (Decapoda: Pinnotheridae): a case of host-associated genetic discontinuities in marine symbionts. (In preparation)

  • Swofford, D. L., Selander, R. B. (1981). BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 172: 281–283

    Google Scholar 

  • Tracey, M. L., Bellet, N. F., Gravem, C. D. (1975). Excess allozyme homozygosity and breeding population structure in the musselMyilus californianus. Mar. Biol. 32: 303–311

    Google Scholar 

  • Wright, S. (1965). The interpretation of population structure byF-statistics with special regard to systems of mating. Evolution 19: 395–420

    Google Scholar 

  • Wright, S. (1978). Evolution and the genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G.F. Humphrey, Sydney

Publication No. 41 from the Evolutionary Genetics Laboratory, University of Auckland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, P.M. A genetic analysis of the pea crabs (Decapoda: Pinnotheridae) of New Zealand. Mar. Biol. 108, 403–410 (1991). https://doi.org/10.1007/BF01313649

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313649

Keywords

Navigation