Skip to main content
Log in

Utilization of a fumigated sediment by two benthic deposit-feeders:Abra alba (Mollusca: Bivalvia) andEupolymnia nebulosa (Annelida: Polychaeta)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The present study tested the utilization of dead microbial biomass by two benthic deposit-feeders:Abra alba (Wood) (Mollusca: Bivalvia) andEupolymnia nebulosa (Montagu) (Annelida: Polychaeta). Clams were collected in the Canet lagoon during spring 1989. Worms were collected in the Port-Vendres harbour during spring 1989. The14C-labelled (glutamic acid, 24 h) sediment used during the study was sterilized with 1% chloroform, washed with sterile seawater, and dried (60°C; 48 h). This sterilisation procedure, called “fumigation” is the least harmful to the sediment (Novitsky 1986). Both clams and worms were incubated in the presence of the fumigated sediment for 5, 10, 20, and 50 h. At the end of each experiment we recorded the radioactivity in four compartments: (1) sediment, (2) dissolved organic matter (DOM), (3) CO2, and (4) animals. The radioactivity of the sediment was subdivided into five fractions: (i) soluble in 2N HCl, (ii) soluble in hot 5% trichloroacetic acid (TCA), (iii) soluble in 1N NaOH, (iv) soluble in hot 6N HCl, (v) residual (after combustion in a Leco carbon analyser). In the first set of experiments, after 20 h of incubation, 5.4 and 4.7% of the total radioactivity was taken up by clams and worms, respectively. However, a model revealed that this uptake could have been correlated with the release of radiolabelled DOM (33% of total radioactivity during the first 5 h). In order to test this assumption, we used the same protocol with three additional washes of the fumigated sediment. This resulted in a significantly lower uptake by the clams (1.9% of the total radioactivity byt = 50 h), whereas the worms exhibited an uptake similar to that in the initial experiment (5.1% of total radioactivity byt = 50 h). These results underline the importance of considering interactions with DOM when applying radiotracer techniques to the study of benthic food chains. The average ingestion rates of fumigated sediment byA. alba andE. nebulosa were 5.2 10−2 mg sediment dry wt mg−1 clam h−1 and 3.5 10−2 mg sediment dry wt mg−1 worm h−1, respectively, which is comparable to previous data reported for other deposit-feeding bivalves and polychaetes feeding on natural sediment or detritus. The low radioactivity recorded for CO2 together with the similarity of the changes in the partitioning of the radioactivity within the sediment between control experiments and experiments carried out in the presence of clams or worms suggest low assimilation efficiencies. Therefore, the present study supports the fact that dead microbial biomass does not constitute an important food source for benthic deposit-feeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Adams, S. M., Angelovic, J. W. (1970). Assimilation of detritus and its associated bacteria by three species of estuarine animals. Chesapeake Sci. 12: 249–254

    Google Scholar 

  • Amouroux, J. M. (1982). Ethologie, filtration, nutrition, bilan énergétique deVenus verrucosa Linné (bivalves). Thèse. Université Paris 6

  • Amouroux, J. M. (1986a). Comparative study of the carbon cycle inVenus verrucosa fed on bacteria and phytoplankton. I. Consumption of bacteria (Lactobacillus sp.). Mar. Biol. 90: 237–241

    Google Scholar 

  • Amouroux, J. M. (1986b). Comparative study of the carbon cycle inVenus verrucosa fed on bacteria and phytoplankton. II. Consumption of phytoplankton (Pavlova lutheri). Mar. Biol. 92: 349–354

    Google Scholar 

  • Amouroux, J. M., Grémare, A., Amouroux, J. (1989). Modelling of consumption and assimilation inAbra alba (Mollusca: Bivalvia). Mar. Ecol. Prog. Ser. 51: 87–97

    Google Scholar 

  • Bodiou, J.-Y., Amouroux, J. M., Centelles, J., Tito de Morais, L. (1989). Biologie et croissance des juvéniles de Soleidae dans l'étang de Canet-Saint-Nazaire (P.O.). Groupement Intérêt Scientifique-Action Recherche Mediterranée (GIS-ARM), Laboratoire Arago, Banyuls-sur-mer (Rapp. GIS-ARM; Contrat 87 3 220 068: limited distribution

  • Cahet, G., Sibuet, M. (1986). Activité biologique en domaine profond: transformations biochimiquesin situ de composés organiques marqués au carbone-14 par 2000 m de profondeur dans le golfe de Gascogne. Mar. Biol. 90: 307–315

    Google Scholar 

  • Cammen, L. M. (1980). The significance of microbial carbon in the nutrition of the deposit-feeding polychaeteNereis succinea. Mar. Biol. 61: 9–20

    Google Scholar 

  • Conover, R. J., Francis, V. (1973). The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Mar. Biol. 18: 272–283

    Google Scholar 

  • Crosby, M. P. (1985). The use of a rapid radiolabelling method for measuring the ingestion rates of detritivores. J. exp. mar. Biol. Ecol. 93: 273–283

    Google Scholar 

  • Dales, R. P. (1955). Feeding and digestion in terebellid polychaetes. J. mar. biol. Ass. U.K. 34: 55–79

    Google Scholar 

  • Dring, M. J., Jewson, D. H. (1982). What does14C uptake by phytoplankton really measure? A theoretical approach. Proc. R. Soc. (Ser. B) 214: 351–368

    Google Scholar 

  • Grémare, A. (1988). Feeding, tube-building and particle-size selection in the terebellid polychaeteEupolymnia nebulosa. Mar. Biol. 97: 243–252

    Google Scholar 

  • Grémare, A. (1990). Consumption of diatoms and diatom filtrates by the tentaculate deposit-feederEupolymnia nebulosa (Annelida: Polychaeta). Mar. Biol. 106: 139–143

    Google Scholar 

  • Grémare, A., Amouroux, J. M., Amouroux, J. (1989). Modelling of consumption and assimilation in the deposit-feeding polychaeteEupolymnia nebulosa. Mar. Ecol. Prog. Ser. 54: 239–248

    Google Scholar 

  • Guidi, L. D. (1986). The feeding response of the epibenthic amphipodSiphonocoetes dellavallei Stebbing to varying particle sizes and concentrations. J. exp. mar. Biol. Ecol. 71: 289–298

    Google Scholar 

  • Hargrave, B. T. (1970). The utilization of benthic microflora byHyalella azteca (Amphipoda). J. Anim. Ecol. 39: 427–437

    Google Scholar 

  • Kemp, P. F. (1986). Direct uptake of detrital carbon by the deposit-feeding polychaeteEuzonus mucronata (Treadwell). J. exp. mar. Biol. Ecol. 99: 44–61

    Google Scholar 

  • Kofoed, L. H. (1975). The feeding biology ofHydrobia ventrosa (Montagu). I. The assimilation of different components of food. J. exp. mar. Biol. Ecol. 19: 233–241

    Google Scholar 

  • Lang, F. (1984). Etude de l'activité tentaculaire deEupolymnia nebulosa Montagu: son rôle sur la dynamique de la population et la dynamique due peuplement. Océanis, Paris 10: 775–784

    Google Scholar 

  • Lang, F. (1986). Peuplement des fonds durs du bassin maritime de la Rânce; rôle fonctionnel deEupolymnia nebulosa (annélide polychète). Thèse de doctorat. Université de Rennes

  • Lopez, G. R., Cheng, I. J. (1983). Synoptic measurement of ingestion rate, ingestion selectivity, and absorption efficiency of natural foods in the deposit-feeding molluscsNucula anulata (Bivalvia) andHydrobia totteni (Gastropoda). Mar. Ecol. Prog. Ser. 11: 55–62

    Google Scholar 

  • Lopez, G. R., Levinton, J. S. (1987). Ecology of deposit-feeding animals in marine sediments. Q. Rev. Biol. 62: 235–259

    Google Scholar 

  • Meyer-Reil, L. A. (1978). Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. envirl Microbiol. 36: 505–512

    Google Scholar 

  • Novitsky, J. A. (1983). Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax Harbor, Canada. Appl. envirl Microbiol. 45: 1753–1760

    Google Scholar 

  • Novitsky, J. A. (1986). Degradation of dead microbial biomass in a marine sediment. Appl. envirl Microbiol 52: 504–509

    Google Scholar 

  • Smith, D. F. Horner, M. J. (1981). Tracer kinetic analysis applied to problems in marine biology. Can. Bull. Fish. aquat. Sciences 210: 113–129

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co. San Francisco

    Google Scholar 

  • Tenore, K. R. (1975). Detrital utilization by the polychaeteCapitella capitata. J. mar. Res. 33: 261–274

    Google Scholar 

  • Wolfinbarger, L., Crosby, M. P. (1983). A convenient procedure for radiolabeling detritus with14C-dimethylsulfate. J. exp. mar. Biol. Ecol. 67: 185–198

    Google Scholar 

  • Zimmermann, R., Ituriaga, R., J. Becker-Birck (1978). Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. envirl Microbiol. 36: 926–935

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grémare, A., Amouroux, J.M., Cahet, G. et al. Utilization of a fumigated sediment by two benthic deposit-feeders:Abra alba (Mollusca: Bivalvia) andEupolymnia nebulosa (Annelida: Polychaeta). Mar. Biol. 109, 469–477 (1991). https://doi.org/10.1007/BF01313512

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313512

Keywords

Navigation