Advertisement

Marine Biology

, Volume 108, Issue 1, pp 151–155 | Cite as

Growth pattern andβ-dimethylsulphoniopropionate (DMSP) content of green macroalgae at different irradiances

  • U. Karsten
  • C. Wiencke
  • G. O. Kirst
Article

Abstract

Growth rates and intracellularβ-dimethylsulphoniopropionate (DMSP) concentrations of five green algal species collected from different geographic regions in 1986 and 1989 were determined under four photon flux rates. InUlothrix implexa, U. subflaccida andAcrosiphonia arcta from Antarctica, growth was light-saturated at lower irradiances than in temperateUlva rigida from Southern Chile andBlidingia minima from Germany. The DMSP content ofUlothrix implexa, A. arcta andUlva rigida was directly correlated with the light factor: with increasing irradiance, algal DMSP level increased. In contrast, inUlothrix subflaccida andB. minima DMSP concentrations gradually decreased up to a photon flux rate of 30µmol m−2 s−1, then increased markedly under the highest photon flux rate tested. In non-growing, dark-incubatedA. arcta DMSP content was reduced by 35%, while the DMSP pool of all other species remained unchanged, at the level of pre-culture conditions. Under full darkness all plants exhibited a significantly higher DMSP concentration compared with algae grown at low photon flux rates of 2 to 30µmol m−2 s−1. These data show a correlation between growth pattern and DMSP biosynthesis, and may point to a species-specific minimum amount of light energy necessary for DMSP accumulation.

Keywords

Growth Pattern Macroalgae Algal Species Lower Irradiance High Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Charlson, R. J., Lovelock, J. E., Andreae, M. O., Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, Lond. 326: 655–661Google Scholar
  2. Dickson, D. M., Wyn Jones, R. G., Davenport, J. (1980). Steady state osmotic adaptation inUlva lactuca. Planta 150: 158–165Google Scholar
  3. Dickson, D. M., Wyn Jones, R. G., Davenport, J. (1982). Osmotic adaptation inUlva lactuca under fluctuating salinity regimes. Planta 155: 409–415Google Scholar
  4. Edwards, D. M., Reed, R. H., Chudek, J. A. Foster, R., Stewart, W. D. P. (1987). Organic solute accumulation in osmotically-stressedEnteromorpha intestinalis. Mar. Biol. 95: 583–592Google Scholar
  5. Edwards, D. M., Reed, R. H., Stewart, W. D. P. (1988). Osmoacclimation inEnteromorpha intestinalis: long-term effects of osmotic stress on organic solute accumulation. Mar. Biol. 98: 467–476Google Scholar
  6. Fortes, M. D. Lüning, K. (1980). Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgoländer Meeresunters. 34: 15–29Google Scholar
  7. Iverson, R. L., Nearhoof, F. L., Andreae, M. O. (1989). Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters. Limnol. Oceanogr. 34: 53–67Google Scholar
  8. Karsten, U., Kirst, G. O. (1989). Intracellular solutes, photosynthesis and respiration of the green algaBlidingia minima in response to salinity stress. Botanica Acta (Ber. dt. bot. Ges.) 102: 123–128Google Scholar
  9. Karsten, U., Wiencke, C., Kirst, G. O. (1990). Theβ-dimethylsulphoniopropionate (DMSP) content of macroalgae from Antarctica and Southern Chile. Botanica mar. 33: 143–146Google Scholar
  10. Karsten, U., Wiencke, C., Kirst, G. O. (1991). The effect of light intensity and daylength on theβ-dimethylsulphoniopropionate (DMSP) content of marine green macroalgae from Antarctica. Pl. Cell Envir. (in press)Google Scholar
  11. Lobban, C. S., Harrison, P. J., Duncan, M. J. (1985) The physiological ecology of seaweeds. Cambridge University Press, CambridgeGoogle Scholar
  12. Ohno, M. (1969). A physiological ecology of the early stage of some marine algae. Rep. Usa U.S.A. mar. biol. Stn, Kochi Univ. (Kochi-Ken, Japan) 16: 1–42Google Scholar
  13. Provasoli, L. (1968). Media and prospects for cultivation of marine algae. In: Watanabe, A., Hattori, A. (eds.) Cultures and collections of algae. Japanese Society of Plant Physiology, Tokyo, p. 47–74Google Scholar
  14. Reed, R. H. (1983). Measurements and osmotic significance ofβ-dimethylsulphoniopropionate in marine macroalgae. Mar. Biol. Lett. 4: 173–181Google Scholar
  15. Sand-Jensen, K. (1988). Minimum light requirements for growth inUlva lactuca. Mar. Ecol. Prog. Ser. 50: 187–193Google Scholar
  16. Turner, S. M., Malin, G., Liss, P. S., Harbour, D. S., Holligan, P. M. (1988). The seasonal variation of dimethyl sulfide and dimethylsulfoniumpropionate concentrations in nearshore waters. Limnol. Oceanogr. 33: 364–375Google Scholar
  17. Wiencke, C. (1990). Seasonality of red and green macroalgae from Antarctica determined in a long-term culture study under fluctuating Antarctic daylengths. Polar Biol. 10: 601–607Google Scholar
  18. Wiencke, C., tom Dieck, I. (1990). Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar. Ecol. Prog. Ser. 59: 157–170Google Scholar
  19. Wiencke, C., Fischer, G. (1990). Growth and stable isotope composition of cold-water macroalgae in relation to light and temperature. Mar. Ecol. Prog. Ser. 65: 283–292Google Scholar
  20. White, R. H. (1982). Analysis of dimethyl sulfonium compounds in marine algae. J. mar. Res. 40: 529–536Google Scholar
  21. Young, A. J., Collins, J. C., Russell, G. (1987a). Solute regulation in the euryhaline marine algaEnteromorpha prolifera (O. F. Müll). J. exp. Bot. 38: 1298–1308Google Scholar
  22. Young, A. J., Collins, J. C., Russell, G. (1987b). Ecotypic variation in the osmotic responses ofEnteromorpha intestinalis (L.) Link. J. exp. Bot. 38: 1309–1324Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • U. Karsten
    • 1
  • C. Wiencke
    • 2
  • G. O. Kirst
    • 1
  1. 1.Department of Marine BotanyUniversity of BremenBremenGermany
  2. 2.Alfred Wegener Institute of Polar and Marine ResearchBremerhavenGermany

Personalised recommendations