Advertisement

Marine Biology

, Volume 108, Issue 1, pp 119–128 | Cite as

Complete carbon and nitrogen budgets for the hydromedusaCladonema californicum (Anthomedusa: Cladonemidae)

  • J. Costello
Article

Abstract

Complete carbon and nitrogen budgets were constructed for a single cohort of the hydromedusaCladonema californicum Hyman, 1947, collected in 1984 from Santa Catalina Island, California, USA. The budgets accounted for 62 to 84% (average = 74%) of ingested C and 60 to 108% (average = 84%) of ingested N. During most of the medusan life cycle, expenditures for growth exceeded those for metabolism and dissolved organic release (DOR). The gross growth efficiency was lower for C than for N; different conversion rates of C and N are discussed in terms of C:N ratios and budget balances for predator and prey. Growth rates, egg production, and C and N composition ofC. californicum were quite different from those of neritic ctenophores, indicating that gelatinous predators may be a physiologically diverse group.

Keywords

Nitrogen Growth Rate Life Cycle Conversion Rate Diverse Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alldredge, A. L. (1984). The quantitative significance of gelatinous zooplankton as pelagic consumers. In: Fasham, M. J. R. (ed.) Flows of energy and materials in marine ecosystems: theory and practice. Plenum Press, New York, p. 407–433Google Scholar
  2. Armstrong, F. A., Williams, P. M., Strickland, J. D. (1966). Photooxidation of organic matter in sea water by ultraviolet radiation; analytical and other applications. Nature, Lond. 211: 481–483Google Scholar
  3. Baker, L. D., Reeve, M. R. (1974). Laboratory culture of the lobate ctenophoreMnemiopsis mccradyi with notes on feeding and fecundity. Mar. Biol. 26: 57–62Google Scholar
  4. Bertalanffy, L. von (1960). Principles and theory of growth. In: Nowinski, W. W. (ed.) Fundamental aspects of normal and malignant growth. Elsevier, Amsterdam, p. 137–259Google Scholar
  5. Brafield, A. E., Llewellyn, M. J. (1982). Animal energetics. Chapman and Hall, LondonGoogle Scholar
  6. Calow, P. (1977). Conversion efficiencies in heterotrophic organisms. Biol. Rev. 52: 385–409Google Scholar
  7. Conover, R. J. (1978). Transformation of organic matter. In: Kinne, O. (ed.) Marine ecology, Vol. 4. John Wiley & Sons, Chichester, p. 221–456Google Scholar
  8. Conover, R. J., Lalli, C. M. (1974). Feeding and growth inClione limacina (Phillips), a pteropod mollusc. II. Assimilation, metabolism, and growth efficiency. J. exp. mar. Biol. Ecol. 16: 131–154Google Scholar
  9. Corner, E. D. S., Davies, A. G. (1971). Plankton as a factor in the nitrogen and phosphorus cycles in the sea. Adv. mar. Biol. 9: 101–204Google Scholar
  10. Costello, J. H. (1987). Physiology and nutrition of the hydromedusaCladonema californicum. Ph. D. thesis, University of Southern California, Los AngelesGoogle Scholar
  11. Costello, J. H. (1988). Laboratory culture and feeding of the hydromedusaCladonema californicum Hyman (Anthomedusa: Cladonemidae). J. exp. mar. Biol. Ecol. 123: 177–188Google Scholar
  12. Dagg, M. J. (1976). Complete carbon and nitrogen budgets for the carnivorous amphipodCalliopius laeviusculus (Kroger). Int. Revue ges. Hydrobiol. 61: 297–357Google Scholar
  13. Feigenbaum, D., Kelly, M. (1984). Changes in the lower Chesapeake Bay food chain in the presence of the sea nettleChrysaora quinquecirrhia (Scyphomedusa). Mar. Ecol. Prog. Ser. 19: 39–47Google Scholar
  14. Fraser, J. H. (1969). Experimental feeding of some medusae and chaetognaths. J. Fish. Res. Bd Can. 26: 1743–1762Google Scholar
  15. Gravitz, N., Gleye, L. (1975). A photochemical side reaction that interferes with the phenolhypochlorite assay for ammonia. Limnol. Oceanogr. 2: 1015–1017Google Scholar
  16. Hamner, W. M., Jenssen, R. M. (1974). Growth, degrowth and irreversible cell differentiation inAurelia aurtia. Am. Zool. 14: 833–849Google Scholar
  17. Hirota, J. (1974). Quantitative natural history ofPleurobrachia bachei in La Jolla Bight. Fish. Bull. U.S. 72: 295–335Google Scholar
  18. Ieda, T. (1974). Nutritional ecology of marine zooplankton. Mem. Fac. Fish. Hokkaido Univ. 22: 1–88Google Scholar
  19. Johannes, R. E., Satomi, M. (1967). Measuring organic matter retained by aquatic invertebrates. J. Fish. Res. Bd Can. 24: 2467–2471Google Scholar
  20. Kremer, P. (1976). Population dynamics and ecological energetics of a pulsed predator, the ctenophoreMnemiopsis leidyi. In: Wiley, M. L. (ed.) Estuarine Processes, Vol. 1. Academic Press, New York, p. 197–215Google Scholar
  21. Kremer, P. (1977). Respiration and excretion by the ctenophoreMnemiopsis leidyi. Mar. Biol. 44: 43–50Google Scholar
  22. Kremer, P. M., Reeve, M. R. (1989). Growth dynamics of a ctenophore (Mnemiopsis) in relation to a variable food supply. II: Carbon budgets and growth model. J. Plankton Res. 11: 553–574Google Scholar
  23. Kremer, P., Reeve, M. R., Syms, M. A. (1986). The nutritional ecology of the ctenophoreBolinopsis vitrea: comparisons withMnemiopsis mccradyi from the same region. J. Plankton Res. 8: 1197–1208Google Scholar
  24. Lampert, W. (1978). Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 831–834Google Scholar
  25. Larson, R. J. (1986a). Seasonal changes in the standing stocks, growth rates, and production rates of gelatinous predators in Saanich Inlet, British Columbia, Mar. Ecol. Prog. Ser. 33: 89–98Google Scholar
  26. Larson, R. J. (1986b). Water content, organic content, and carbon and nitrogen composition of medusae from the northeast Pacific. J. exp. mar. Biol. Ecol. 99: 107–120Google Scholar
  27. Lee, R. F. (1974). Lipids of zooplankton from Bute Inlet, British Columbia. J. Fish. Res. Bd Can. 31: 1577–1582Google Scholar
  28. Mayzaud, P. (1976). Respiration and nitrogen excretion of zooplankton. IV. The influence of starvation on the metabolism and the biochemical composition of some species. Mar. Biol. 37: 47–58Google Scholar
  29. Miller, R. J., Mann, K. H. (1973). Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. III. Energy transformations by sea urchins. Mar. Biol. 18: 99–114Google Scholar
  30. Moller, H. (1984). Reduction of a larval herring population by a jellyfish predator. Science, N.Y. 224: 621–622Google Scholar
  31. Omori, M., Ikeda, T. (1984). Methods in marine zooplankton ecology. John Wiley & Sons, New YorkGoogle Scholar
  32. Peck, L. S., Culley, M. B., Helm, M. M. (1987). A laboratory energy budget for the ormerHaliotis tuberculata L. J. exp. mar. Biol. Ecol. 106: 103–123Google Scholar
  33. Purcell, J. E. (1983). Digestion rates and assimilation efficiencies of siphonophores fed zooplankton prey. Mar. Biol. 73: 257–261Google Scholar
  34. Purcell, J. E., Grover, J. J. (1990). Predation and food limitation as causes of mortality in larval herring at a spawning ground in British Columbia. Mar. Ecol. Prog. Ser. 59: 55–61Google Scholar
  35. Purcell, J. E., Kremer, P. M. (1983). Feeding and metabolism of the siphonophoreSphaeronectes gracilis. J. Plankton Res. 5: 95–106Google Scholar
  36. Reeve, M. R. (1963). Growth efficiency inArtemia under laboratory conditions. Biol. Bull. mar. biol. Lab., Woods Hole 125: 133–145Google Scholar
  37. Reeve, M. R. (1970). The biology of Chaetognatha. I. Quantitative aspects of growth and egg production inSagitta hispida. In: Steele, J. H. (ed.) Marine food chains. Oliver and Boyd, Edinburgh, p. 168–189Google Scholar
  38. Reeve, M. R., Baker, L. D. (1975). Production of two planktonic carnivores (chaetognath and ctenophore) in south Florida inshore waters. Fish. Bull. U.S. 73: 238–248Google Scholar
  39. Reeve, M. R., Syms, M. A., Ikeda, T. (1978). Laboratory studies of ingestion and food utilization in lobate and tentaculate ctenophores. Limnol. Oceanogr. 23: 740–751Google Scholar
  40. Reeve, M. R., Syms, M. A., Kremer, P. M. (1989). Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. I. Carbon biomass, feeding, egg production, growth and assimilation efficiency. J. Plankton Res. 11: 535–552Google Scholar
  41. Reeve, M. R., Walter, M. R. (1976). A large scale experiment on the growth and predation potential of ctenophore populations. In: Mackie, G. O. (ed.) Coelenterate ecology and behavior. Plenum Press, New York, p. 187–199Google Scholar
  42. Ross, R. M. (1982). Energetics ofEuphausia pacifica. II. Complete carbon and nitrogen budgets at 8° and 12°C throughout the life span. Mar. Biol. 68: 15–23Google Scholar
  43. Sargent, J. R. (1976). The structure, metabolism and function of lipids in marine organisms. In: Malins, D. C., Sargent, J. R. (eds.) Biochemical and biophysical perspectives in marine biology (3). Academic Press, New York, p. 150–168Google Scholar
  44. Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801Google Scholar
  45. Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis, 2nd edn. Bull. Fish. Res. Bd Can. 167: 1–310Google Scholar
  46. Wu, R. S. S., Levings, C. D. (1978). An energy budget for individual barnacles (Balanus glandula). Mar. Biol. 45: 225–235Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. Costello
    • 1
  1. 1.Department of Biological ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations