Advertisement

Marine Biology

, Volume 108, Issue 1, pp 67–71 | Cite as

Nitrate toxicity toPenaeus monodon protozoea

  • P. R. Muir
  • D. C. Sutton
  • L. Owens
Article

Abstract

Increased levels of nitrate occur in natural waters due to pollution, and in aquaculture systems from nitrification and addition of microalgal cultures for feeding. Static bioassays showed that significant mortality of larvalPenaeus monodon (Fabricius) occurred within 40 h at nitrate concentrations as low as 1 mg NO 3 - l−1. Sublethal effects of this concentration resulted in changes to ganglionic neuropiles and muscles. At higher concentrations (10 and 100 mg NO 3 - l−1), additional tissues were affected including the hypodermis, midgut and proventriculus. This is the first report of toxicity to a marine organism of nitrate at concentrations normally present in enclosed seawater and mariculture systems. The results are discussed in terms of management of culture systems and of natural marine ecosystems containing elevated levels of nitrate.

Keywords

Nitrate Toxicity Culture System Natural Water Nitrate Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aquacop (1985). Overview of penaeid culture research: impact on commercial culture activity. In: Taki, Y., Primavera, J. H., Jose, A. L. (eds.) Proceedings of the First International Conference on the Culture of Penaeid Prawns/Shrimps. Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo, Philippines, p. 3–10Google Scholar
  2. Armstrong, D. A., Buchanan, D. V., Mallon, M. H., Caldwell, R. S., Millemann, R. E. (1976). Toxicity of the insecticide methoxychlor to the Dungeness crabCancer magister. Mar. Biol. 38: 239–252Google Scholar
  3. Austin, B. (1988). Marine microbiology. Cambridge University Press, CambridgeGoogle Scholar
  4. Bell, T. A., Lightner, D. V. (1988). Handbook of normal shrimp histology. Allen Press, Lawrence, KansasGoogle Scholar
  5. Bookhout, C. G., Wilson, A. J., Duke, T. W., Lowe, J. H. (1972). Effects of mirex on the larval development of two crabs. Wat. Air Soil Pollut. 1: 165–180Google Scholar
  6. Brown, C. (1973). The effects of some selected bacteria on embryos and larvae of the American oyster,Crassostrea virginica. J. Invertebr. Path. 21: 215–223Google Scholar
  7. Brownell, C. L. (1980). Water quality requirements for first-feeding in marine fish larvae. I. Ammonia, nitrite and nitrate. J. exp. mar. Biol. Ecol 44: 269–283Google Scholar
  8. Colt, J. E., Armstrong, D. A. (1981). Nitrogen toxicity to crustaceans, fish, and molluscs. In: Allen, L. J., Kinney, E. C. (eds.) Proceedings of the Bioengineering Symposium for Fish Culture. Fish Culture Section, American Fisheries Society, Bethesda, Maryland, p. 34–47Google Scholar
  9. Cullings, C. F. A., Alison, R. T., Barr, W. T. (1985). Cellular pathology techniques. 4th ed. Butterworth, LondonGoogle Scholar
  10. De Graaf, Fr. (1964). Maintenance problems in large public aquaria. Archs néerl. Zool. 16: 142–143Google Scholar
  11. Denton, G. R. W., Burdon-Jones, C. (1986). Trace metals in surface water from the Great Barrier Reef. Mar. Pollut. Bull. 17: 96–98Google Scholar
  12. Duke, T. W., Lowe, J. I., Wilson, A. J. (1970). A polychlorinated biphenyl (Aroclor 1254) in the water, sediment and biota of Escambia Bay, Florida. Bull envir. Contam. Toxic. 5: 171–180Google Scholar
  13. Epifano, C. E., Srna, R. F. (1975). Toxicity of ammonia, nitrite ion, nitrate ion, and orthophosphate toMercenaria mercenaria andCrassostrea virginica. Mar. Biol. 33: 241–246Google Scholar
  14. Ewald, J. J. (1965). The laboratory rearing of the pink shrimpPenaeus duorarum (Burkenroad). Bull. mar. Sci. 15: 436–449Google Scholar
  15. Geyer, R. A. (1981). Marine environmental pollution. Vol. 2. Dumping and mining. Elsevier Publishing Co., N.YGoogle Scholar
  16. Grabda, E., Einszporn-Orecka, T., Felinska, C., Zbanysek, R. (1974). Experimental methemoglobinemia in trout. Acta Ichthyol. Piscatoria 4: 43–71. (Cited after Colt and Armstrong 1981)Google Scholar
  17. Hanson, L. A., Grizzle, J. M. (1985). Nitrite-induced predisposition of channel catfish to bacterial diseases. Progve Fish Cult. 47: 98–102Google Scholar
  18. Hudinaga, M. (1942). Reproduction, development and rearing ofPenaeus japonicus Bate. Jap. Zool. 10: 305–393Google Scholar
  19. Kinne, O. (ed.) (1976). Marine ecology. Vol. 3. John Wiley & Sons Ltd., LodnonGoogle Scholar
  20. Kinne, O. (ed.) (1984). Marine ecology. Vol. 5. John Wiley & Sons Ltd., LondonGoogle Scholar
  21. Liao, I. C. (1985). A brief review of the larval rearing techniques of penaeid prawns. In: Taki, Y., Primavera, J. H., Jose, A. L. (eds.) Proceedings of the First International Conference on the culture of Penaeid Prawns/Shrimps. Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo, Philippines, p. 65–78Google Scholar
  22. Motoh, H. (1985). Biology and ecology ofPenaeus monodon. In: Taki, Y., Primavera, J. H., Jose, A. L. (eds.) Proceedings of the First International Conference on the Culture of Penaeid Prawns/Shrimps. Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo, Philippines, p. 27–36Google Scholar
  23. Nimmo, D. R., Blackman, R. R., Wilson, A. J., Jr., Forester, J. (1971). Toxicity and distribution of Aroclor® 1254 in the pink shrimpPenaeus duorarum. Mar. Biol. 11: 191–197Google Scholar
  24. Parsons, T. R., Maita, Y., Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis. Pergamon Press. N. Y.Google Scholar
  25. Preston, N. P. (1985). Factors affecting the survival of the larvae of penaeid prawns. PhD thesis. University of Sydney, SydneyGoogle Scholar
  26. Scheltema, R. S., Williams, I. P. (1982). Significance of temperature to larval survival and length of development inBalanus eburneus (Crustacea: Cirripedia). Mar. Ecol. Prog. Ser. 9: 43–49Google Scholar
  27. Senkbeil, E. G., Wriston, J. C. (1981a). Haemocyanin synthesis in the American lobster,Homarus americanus. Comp. Biochem. Physiol. 68: 163–171Google Scholar
  28. Senkbeil, E. G., Wriston, J. C. (1981b). Catabolism of haemocyanin in the American lobster,Homarus americanus. Comp. Biochem. Physiol. 69: 781–790Google Scholar
  29. Smith, H. A., Jones, T. C., Hunt, R. D. (1972). Veterinary pathology. 4th ed. Lea & Febiger, PhiladelphiaGoogle Scholar
  30. Spencer, C. (1975). The micronutrient elements. In: Riley, J. P., Skirrow, G. (eds.) Chemical oceanography, Vol. 2. 2nd ed. Academic Press, LondonGoogle Scholar
  31. Spotte, S. (1979). Seawater aquariums. John Wiley & Sons, New YorkGoogle Scholar
  32. SPSS, Inc. (1988). SPSSX [Statistical package for the social sciences. X] SPSS Inc., ChicagoGoogle Scholar
  33. Stein, J. R. (1973). Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press, CambridgeGoogle Scholar
  34. Wickins, J. F. (1976). The tolerance of warm water shrimp to recirculated water. Aquaculture, Amsterdam 9: 19–37Google Scholar
  35. Winer, D. (1962). Statistical principles in experimental design. McGraw & Hill Book Co., New YorkGoogle Scholar
  36. Zar, J. H. (1984). Biostatistical analysis. Prentice-Hall Inc., Engelwood Cliffs, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. R. Muir
    • 1
  • D. C. Sutton
    • 1
  • L. Owens
    • 2
  1. 1.Sir George Fisher Centre for Tropical Marine StudiesJames Cook University of North QueenslandTownsvilleAustralia
  2. 2.Department of Tropical Veterinary ScienceJames Cook University of North QueenslandTownsvilleAustralia

Personalised recommendations