Advertisement

Marine Biology

, Volume 108, Issue 1, pp 49–58 | Cite as

Comparative ultrastructure of lipid storage sites in femaleEuchaeta marina andPleuromamma xiphias (Copepoda: Calanoida)

  • P. I. Blades-Eckelbarger
Article

Abstract

FemaleEuchaeta marina (Prestandrea, 1833) have one large, thin-walled lipid sac, whereas femalePleuromamma xiphias (Giesbrecht, 1889) have two separate and morphologically distinct lipid storage sites. One lipid site inP. xiphias corresponds to the mesenteric tissue that surrounds the anterior region of the midgut. The morphology of these cells resembles that of mammalian brown adipocytes. The cytoplasm is filled with extensive smooth endoplasmic reticulum, numerous mitochondria and several deposits of intracellular lipid. The second lipid site ofP. xiphias lies in the posterior region of the metasome and resembles the thin-walled lipid sac ofE. marina. Both lie adjacent to, but are not contiguous with, the narrow mesenteric tissue surrounding the last region of the midgut. Both sacs contain a single, large deposit of intracellular lipid enclosed by a very thin rim of cytoplasm and resemble mammalian white adipocytes. The different habitats and reproductive processes of these two copepod species may relate to the observed variations in lipid cell morphology. The reserve lipid inE. marina plays a primary role in reproduction and is linked closely with the continuous cycle of oocytic maturation. The lipids synthesized and stored byP. xiphias, a strong vertical migrator, may be influenced by food availability, a function of their mesopelagic habitat. The primary role of the reserve lipids in this copepod may be to provide energy during migrations and between feeding periods, with relatively less lipid being allocated to reproduction.

Keywords

Lipid Vertical Migrator Intracellular Lipid Reproductive Process Smooth Endoplasmic Reticulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arnaud, J., Brunet, J. M., Mazza, J. (1978). Studies on the midgut ofCentropages typicus (copepod, calanoid). Cell Tissue Res. 187: 333–353Google Scholar
  2. Bauermeister, A. E. M., Sargent, J. R. (1979). Wax esters: major metabolites in the marine environment. Trends biochem. Sciences 4: 209–211Google Scholar
  3. Benson, A. A., Lee, R. F., Nevenzel, J. C. (1972). Wax esters: major marine metabolic energy sources. Biochem. Soc. Symp. 35: 175–187Google Scholar
  4. Bradford, J. M. (1974).Euchaeta marina (Prestandrea) (Copepoda, Calanoida) and two closely related new species from the Pacific. Pacif. Sci. 28: 159–169Google Scholar
  5. Buskey, E. J., Baker, K. S., Smith, R. C., Swift, E. (1989). Photosensitivity of the oceanic copepodsPleuromamma gracilis andPleuromamma xiphias and its relationship to light penetration and daytime depth distribution. Mar. Ecol. Prog. Ser. 55: 207–216Google Scholar
  6. Claus, C. (1863). Die freilebenden Copepoden mit besonderer Berücksichtigung der Fauna Deutschlands, der Nordsee und des Mittelmeeres. Engelmann, LeipzigGoogle Scholar
  7. Fawcett, D. (1986). Adipose tissue. Chapter 6. In: Fawcett, D. W. (ed.) A textbook of histology. W. B. Saunders Co., London, p. 174–187Google Scholar
  8. Gatten, R. R., Sargent, J. R. (1973). Wax ester biosynthesis in calanoid copepods in relation to vertical migration. Neth. J. Sea Res. 7: 150–158Google Scholar
  9. Giesbrecht, W. (1889). Elenco dei copepodi pelagici raccolti dal tenente di vascello Gaetano Chierchia durante il viaggio della R. Corvetta “Vettor Pisani” negli anni 1882–1885 e del di vascello Francesco Orsini nel Mar Rosso, nel 1884. Atti Rendiconti della Roma Academia dei Lincei, series 4. 5(2): 24–29. [Cited after Ferrari, F. D. (1985). Smithson. Contr. Zool. 420: 1–55]Google Scholar
  10. Hakanson, J. L. (1984). The long and short term feeding condition in field-caughtCalanus pacificus, as determined from the lipid content. Limnol. Oceanogr. 29: 794–804Google Scholar
  11. Haury, L. R. (1988). Vertical distribution ofPleuromamma (Copepoda: Metridinidae) across the eastern North Pacific Ocean. Hydrobiologia 167/168: 335–342Google Scholar
  12. Henderson, R. J., Sargent, J. R. (1980). Biosynthesis of neutral lipids byEuchaeta norvegica. Mar. Biol. 56: 1–6Google Scholar
  13. Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27: p. 137AGoogle Scholar
  14. Lee, R. F. (1974). Lipid composition of the copepodCalanus hyperboreus from the Arctic Ocean. Changes with depth and season. Mar. Biol. 26: 313–318Google Scholar
  15. Lee, R. F., Barnes, R. T. (1975). Lipids in the mesopelagic copepod,Gaussia princeps. Wax ester utilization during starvation. Comp. Biochem. Physiol. 52B: 265–268Google Scholar
  16. Lee, R. F., Hirota, J. (1973). Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol. Oceanogr. 18: 227–239Google Scholar
  17. Lee, R. F., Hirota, J., Barnett, A. M. (1971). Distribution and importance of wax esters in marine copepods and other zooplankton. Deep-Sea Res. 18: 1147–1165Google Scholar
  18. Lee, R. F., Nevenzel, J. C., Lewis, A. G. (1974). Lipid changes during the life cycle of marine copepod,Euchaeta japonica Marukawa. Lipids 9: 891–898Google Scholar
  19. Lowe, E. (1935). On the anatomy of a marine copepod,Calanus finmarchicus (Gunnerus). Trans. R. Soc. Edinb. 58: 561–603Google Scholar
  20. Marshall, S. M., Orr, A. P. (1955). The biology of a marine copepod,Calanus finmarchicus (Gunnerus). Oliver & Boyd, Edinburgh and LondonGoogle Scholar
  21. Park, T. (1975). Calanoid copepods of the family Euchaetidae from the Gulf of Mexico and western Caribbean Sea. Smithson. Contr. Zool. 196: 1–26Google Scholar
  22. Petipa, T. S. (1964). The diurnal rhythm of the consumption and accumulation of fat inCalanus finmarchicus (Claus) in the Black Sea. Dokl. Acad. Nauk armyan. SSR 156: 361–364Google Scholar
  23. Prestandrea, N. (1833). Su di alcuni nuovi crostacei del Mare di Messina. Effemeridi Scient. Letterarie Sicilia. 6: 3–14. [Cited after Park, T. (1978). Antarctic Res. Ser. 27: 91–290]Google Scholar
  24. Reger, J. F., Frase, S., Tso, P. (1989). Fine structure observations on rat jejunal epithelial cells during fat processing and resorption following L-81 exposure and reversal. J. submicrosc. Cytol. Path. 21: 399–408Google Scholar
  25. Richardson, K. C., Jarett, L., Finke, E. H. (1960). Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 335: 313–323Google Scholar
  26. Sargent, J. R., Falk-Petersen, S. (1988). The lipid biochemistry of calanoid copepods. Hydrobiologia 167/168: 101–114Google Scholar
  27. Sargent, J. R., Henderson, R. J. (1986). Lipids. In: Corner, E. D. S., O'Hara, S. C. M. (eds.) The biological chemistry of marine copepods. Clarendon Press, Oxford, p. 59–108Google Scholar
  28. Slavin, B. G. (1987). The ultrastructure of adipocytes. In: Hausman, G. J., Martin, R. (eds.) The biology of the adipocyte. Research approaches. Van Nostrand Reinhold Co. Inc., New York, p. 52–85Google Scholar
  29. Williamson, J. R. (1964). Adipose tissue. Morphological changes associated with lipid metabolism. J. Cell Biol. 20: 57–74Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. I. Blades-Eckelbarger
    • 1
  1. 1.Harbor Branch Oceanographic Institution, Inc.Fort PierceUSA

Personalised recommendations