Marine Biology

, Volume 108, Issue 1, pp 11–19 | Cite as

Respiration and nitrogen metabolism of Atlantic halibut eggs (Hippoglossus hippoglossus)

  • R. N. Finn
  • H. J. Fyhn
  • M. S. Evjen


Naturally spawned and fertilized eggs of Atlantic halibut,Hippoglossus hippoglossus L., were analysed for protein, free amino acids (FAA), ammonium ions and energy content. The chemical composition was found to be size-dependent but varied little during egg development. Ammonium ions did, however, accumulate during the late embryonic stage, and the trend in FAA content was downward during the same period. Rates of O2 uptake and NH3 excretion followed exponential patterns. A total of 1µmol O2 was consumed and 120 nmol NH3 excreted between the time intervals of fertilization and 1 d post hatch. Derived O:N ratios indicated that the dominant portion of the energy metabolism was lipid- or carbohydrate-based during the mid-development period but switched to FAA as hatch was approached.


Nitrogen Lipid Ammonium Respiration Energy Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Amberson, W. R., Armstrong, P. B. (1933). The respiratory metabolism ofFundulus heteroclitus during embryonic development. J. cell. comp. Physiol. 2: 387–397Google Scholar
  2. Bell, M. V., Henderson, R. J., Pirie, B. J. S., Sargent, J. R. (1985). Effects of dietary polyunsaturated fatty acid deficiencies on mortality, growth and gill structure of turbot (Scophthalmus maximus L.). J. Fish Biol. 26: 181–191Google Scholar
  3. Berg, L., Øiestad, V. (1986). Growth and survival studies of halibut (Hippoglossus hippoglossus L.) from hatching to beyond metamorphosis carried out in mesocosms. Int. Counc. Explor. Sea Comm. Meet. (Maricult. Comm.) F:16: 1–19Google Scholar
  4. Blaxter, J. H. S. (1988). Pattern and variety in development. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology, Vol. XI A. Academic Press, New York, p. 1–58Google Scholar
  5. Boulekbache, H. (1981). Energy metabolism in fish development. Am. Zool. 21: 377–389Google Scholar
  6. Brafield, A. E. (1985). Laboratory studies of energy budgets. In: Tytler, P., Calow, P. (eds.) Fish energetics: new perspectives. Croom Helm, London, p. 257–281Google Scholar
  7. Brett, J. R., Groves, T. D. D. (1979). Physiological Energetics. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology, Vol. VIII. Academic Press, New York, p. 279–281Google Scholar
  8. Bull, H. B. (1971). An introduction to physical biochemistry, 2nd edn. F. A. Davis Company, PhiladelphiaGoogle Scholar
  9. Cetta, C. M., Capuzzo, J. M. (1982). Physiological and biochemical aspects of embryonic and larval development of the winter flounder,Pseudopleuronectes americanus. Mar. Biol. 71: 327–337Google Scholar
  10. Conover, R. J., Corner, E. D. S. (1968). Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. mar. biol. Ass. U.K. 48: 49–75Google Scholar
  11. Davenport, J., Lønning, S., Kjørsvik, E. (1983). Ammonia output by the eggs and larvae of the lumpsucker (Cyclopterus lumpus), the cod (Gadus morhua) and the plaice (Pleuronectes platessa). J. mar. biol. Ass. U.K. 63: 713–723Google Scholar
  12. Devold, F. (1938). The North Atlantic halibut and net fishing. FiskDir. Skr. (Ser. Havunders.) 5 (6): 1–47Google Scholar
  13. Ehrlich, K. F. (1974). Chemical changes during growth and starvation of larvalPleuronectes platessa. Mar. Biol. 24: 39–48Google Scholar
  14. Falk-Peterson, S., Falk-Peterson, I. B., Sargent, J. R., Haug, T. (1986). Lipid class and fatty acid composition of eggs from Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, Amsterdam 52: 207–211Google Scholar
  15. Fraser, A. J., Gamble, J. C., Sargent, J. R. (1988). Changes in lipid content, lipid class composition and fatty acid composition of developing eggs and unfed larvae of cod (Gadus morhua). Mar. Biol. 99: 307–314Google Scholar
  16. Fyhn, H. J. (1989). First feeding of marine fish larvae: Are free amino acids the source of energy? Aquaculture, Amsterdam 80: 111–120Google Scholar
  17. Fyhn, H. J. (1990). Energy production in marine fish larvae with emphasis on free amino acids as a potential fuel. In: Mellinger, J., Truchot, J. P., Lahlou, B. (eds.) Comparative physiology: animal nutrition and transport processes. Karger, Switzerland, p. 176–192Google Scholar
  18. Fyhn, H. J., Mangor-Jensen, A., Serigstad, B. (1986). Free amino acids in developing eggs and larvae of the cod. Basic studies and effects of oil. In: Fyhn, H. J. (ed.) Fish larval physiology and anatomy. Basic research and effects of oil. University of Bergen, Norway, p. 167–201Google Scholar
  19. Fyhn, H. J., Serigstad, B. (1987). Free amino acids as energy substrate in developing eggs and larvae of the cod (Gadus morhua). Mar. Biol. 96: 335–341Google Scholar
  20. Gatesoupe, F. J., Léger, C., Metailler, R., Luquet, P. (1977). Alimentation lipidique du turbot (Scophthalmus maximus L.): Influence de la longeur de chaine des acides gras de la serieω3. Annls Hydrobiol. 8: 89–97Google Scholar
  21. Grasdalen, H., Jørgensen, L. (1985). In vivo NMR studies of fish eggs. Monitoring of metabolite levels, intracellular pH, and the freezing and permeability of water in developing eggs of plaice,Pleuronectes platessa L. Sarsia 72: 359–361Google Scholar
  22. Green, E. J., Carritt, D. E. (1967). New tables for oxygen saturation of seawater. J. mar. Res. 25: 140–147Google Scholar
  23. Hagenmeier, H. E., Smitz, I., Føhles, J. (1976). Zum Vorkommen von Isopeptidbindungen in der Eihülle der Regenbogenforelle (Salmo gairdneri Rich.). Hoppe-Seyler's Z. physiol. Chem. 357: 1436–1438Google Scholar
  24. Harvey, H. W. (1966). The chemistry and fertility of sea waters, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  25. Haug, T. (1990) Biology of the Atlantic halibut,Hippoglossus hippoglossus (L., 1758). A review. Adv. mar. Biol. 26: 1–70Google Scholar
  26. Haug, T., Kjørsvik, E., Solemdal, P. (1984). Vertical distribution of Atlantic halibut (Hippoglossus hippoglossus) eggs. Can. J. Fish. aquat. Sciences 41: 798–804Google Scholar
  27. Haug, T., Ringø, E., Pettersen, G. W. (1988). Total lipid and fatty acid composition of polar and neutral lipids in different tissues of Atlantic Halibut (Hippoglossus hippoglossus L.) eggs. Sarsia 73: 163–168Google Scholar
  28. Helvik, J. V. (1988). Klekkeprosessen hos kveite (Hippoglossus hippoglossus L.). Cand. scient. thesis. University of Bergen, Norway (In Norwegian)Google Scholar
  29. Henderson, R. J., Sargent, J. R. (1985). Fatty acid metabolism in fish. In: Cowey, C. B., Mackie, A. M., Bell, J. G. (eds.) Nutrition and feeding in fish. Academic Press, New York, p. 349–364Google Scholar
  30. Hollett, A., Hayes, F. R. (1946). Protein and fat of the salmon egg as sources of energy for the developing embryo. Can. J. Res. (Ser. D) 24: 39–50Google Scholar
  31. Howell, B. R., Scott, A. P. (1988). Ovulation cycles and post-ovulatory deterioration of eggs to turbot (Scophthalmus maximus L.) Rapp. P.-v. Réun. Cons. int. Explor. Mer 191: 21–26Google Scholar
  32. Kjesbu, O. S. (1989). The spawning activity of cod,Gadus morhua L. J. Fish. Biol. 34: 195–206Google Scholar
  33. Kjørsvik, E., Mangor-Jensen, A., Holmefjord, I. (1990) Egg quality in marine fishes. Adv. mar. Biol. 26: 71–113Google Scholar
  34. Léger, C., Gatesoupe, F. J., Metailler, R., Luquet, P., Fremont, L. (1979). Effect of dietary fatty acids differing by chain lengths on the growth and lipid composition of the turbot (Scophthalmus maximus L.). Comp. Biochem. Physiol. 64B: 345–350Google Scholar
  35. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275Google Scholar
  36. Mangor-Jensen, A. (1987). Water balance in developing eggs of the cod,Gadus morhua L. Fish Physiol. Biochem. 3: 17–24Google Scholar
  37. Mangor-Jensen, A., Jelmert, A. (1986). The effect of ambient salinity on the buoyancy of eggs from the Atlantic halibut (Hippoglossus hippoglossus). Int. Counc. Explor. Sea Comm. Meet. (Maricult. Comm.) F:52: 1–7Google Scholar
  38. McCracken, F. D. (1958). On the biology and fishery of the Canadian Atlantic halibut,Hippoglossus hippoglossus L. J. Fish. Res. Bd Can. 15: 1269–1311Google Scholar
  39. McEvoy, L. A. (1984). Ovulatory rhythms and over-ripening of eggs in cultivated turbot,Scophthalmus maximus L. J. Fish Biol. 24: 437–448Google Scholar
  40. McIntyre, A. D. (1952). Statistics of the Scottish halibut fishery 1930–1949. Mar. Res. 1952(1): 1–24Google Scholar
  41. Oppen-Berntsen, D. O. (1990). Oogenesis and hatching in teleostan fishes with special reference to eggshell proteins. Dr. scient. thesis, University of Bergen, NorwayGoogle Scholar
  42. Oppen-Berntsen, D. O., Helvik, J. V., Walther, B. T. (1990). The major structural proteins of cod (Gadus morhua) eggshell and protein crosslinking during teleost egg hardening. Devl Biol. 137: 258–265Google Scholar
  43. Owen, M., Adron, J. W., Middleton, C., Cowey, C. B. (1975). Elongation and desaturation of dietary fatty acids in turbot (Scophthalmus maximus L.) and rainbow trout (Salmo gairdneri L.). Lipids 10: 528–531Google Scholar
  44. Phillipson, J. (1964). A miniature bomb calorimeter for small biological samples. Oikos 15: 130–139Google Scholar
  45. Prus, T. (1975). Measurement of calorific value using Phillipson microbomb calorimeter. In: Crodzinki, W., Klekowski, R. Z., Duncan, C. (eds.) Ecological energetics. IBP Handbook 24. Blackwell Scientific Publications, Oxford, p. 149–160Google Scholar
  46. Riis-Vestergaard, J. (1982). Water and salt balance of halibut eggs and larvae (Hippoglossus hippoglossus). Mar. Biol. 70: 135–139Google Scholar
  47. Rollefsen, G. (1934). The eggs and larvae of the halibut (Hippoglossus vulgaris). K. norske Vidensk. Selsk. Skr. 7: 20–23Google Scholar
  48. Rønnestad, I., Knutsen, H. (in press). Flow injection analysis in marine aquacultural research: ammonia excretion in marine fish larvae. In focus: the Tecator journal of technology for chemical analysis, Vol. 14. Tecator AB, Höganäs, SwedenGoogle Scholar
  49. Rutter, W. J. (1967). Protein determinations in embryos. In: Witt, F. H., Wessels, N. K. (eds.) Methods in developmental biology. Academic Press, New York, p. 671–684Google Scholar
  50. Scott, A. P., Middleton, C. (1979). Unicellular algae as food for turbot (Scophthalmus maximus L.) larvae — importance of dietary long-chain polyunsaturated fatty acids. Aquaculture, Amsterdam 18: 227–240Google Scholar
  51. Serigstad, B. (1987). Oxygen uptake of developing fish eggs and larvae. Sarsia 72: 369–371Google Scholar
  52. Smith, S. (1952). Studies in the development of the rainbow trout (Salmo gairdneri Richardson). II. The metabolism of carbohydrates and fats. J. exp. Biol. 29: 650–666Google Scholar
  53. Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research, 2nd edn. W. H. Freeman & Co., San FranciscoGoogle Scholar
  54. Solemdal, P., Tilseth, S., Øiestad, V. (1974). Rearing and halibut: incubation and the early larval stages. Int. Counc. Explor. Sea Comm. Meet. (Maricult. Comm.) F:41: 1–5Google Scholar
  55. Solórzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801Google Scholar
  56. Tytler, P., Blaxter, J. H. S. (1988). Drinking in yolk-sac stage larvae of the halibut,Hippoglossus hippoglossus (L.). J. Fish Biol. 32: 493–494Google Scholar
  57. Watanabe, T. (1982). Lipid nutrition in fish. Comp. Biochem. Physiol. 73B(1): 3–15Google Scholar
  58. Yamagami, K. (1988). Mechanism of hatching in fish. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology, Vol. XIA. Academic Press, New York, p. 447–449Google Scholar
  59. Yamamoto, T. S. (1984). Ammonia release by chum salmon eggs at the initiation of their embryonic development. Dev. Growth Differentiation 26: 95–104Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • R. N. Finn
    • 1
  • H. J. Fyhn
    • 2
  • M. S. Evjen
    • 2
  1. 1.Institute of AquacultureUniversity of StirlingStirlingScotland
  2. 2.Zoological LaboratoryUniversity of BergenBergenNorway

Personalised recommendations